modify lenet&alexnet dir

This commit is contained in:
wukesong 2020-05-29 15:08:02 +08:00
parent fce37a5fbe
commit 7dfd369998
17 changed files with 148 additions and 70 deletions

View File

@ -36,10 +36,9 @@ class AlexNet(nn.Cell):
"""
Alexnet
"""
def __init__(self, num_classes=10):
def __init__(self, num_classes=10, channel=3):
super(AlexNet, self).__init__()
self.batch_size = 32
self.conv1 = conv(3, 96, 11, stride=4)
self.conv1 = conv(channel, 96, 11, stride=4)
self.conv2 = conv(96, 256, 5, pad_mode="same")
self.conv3 = conv(256, 384, 3, pad_mode="same")
self.conv4 = conv(384, 384, 3, pad_mode="same")

View File

@ -23,7 +23,7 @@ import mindspore.dataset.transforms.vision.c_transforms as CV
from mindspore.common import dtype as mstype
def create_dataset(data_path, batch_size=32, repeat_size=1, status="train"):
def create_dataset_mnist(data_path, batch_size=32, repeat_size=1, status="train"):
"""
create dataset for train or test
"""

View File

@ -20,10 +20,10 @@ python eval.py --data_path /YourDataPath --ckpt_path Your.ckpt
import argparse
from config import alexnet_cfg as cfg
from dataset import create_dataset
from dataset import create_dataset_mnist
from alexnet import AlexNet
import mindspore.nn as nn
from mindspore import context
from mindspore.model_zoo.alexnet import AlexNet
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
@ -50,9 +50,8 @@ if __name__ == "__main__":
print("============== Starting Testing ==============")
param_dict = load_checkpoint(args.ckpt_path)
load_param_into_net(network, param_dict)
ds_eval = create_dataset(args.data_path,
cfg.batch_size,
1,
"test")
ds_eval = create_dataset_mnist(args.data_path,
cfg.batch_size,
status="test")
acc = model.eval(ds_eval, dataset_sink_mode=args.dataset_sink_mode)
print("============== Accuracy:{} ==============".format(acc))

View File

@ -20,14 +20,14 @@ python train.py --data_path /YourDataPath
import argparse
from config import alexnet_cfg as cfg
from dataset import create_dataset
from dataset import create_dataset_mnist
from generator_lr import get_lr
from alexnet import AlexNet
import mindspore.nn as nn
from mindspore import context
from mindspore import Tensor
from mindspore.train import Model
from mindspore.nn.metrics import Accuracy
from mindspore.model_zoo.alexnet import AlexNet
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
@ -50,9 +50,9 @@ if __name__ == "__main__":
model = Model(network, loss, opt, metrics={"Accuracy": Accuracy()}) # test
print("============== Starting Training ==============")
ds_train = create_dataset(args.data_path,
cfg.batch_size,
cfg.epoch_size)
ds_train = create_dataset_mnist(args.data_path,
cfg.batch_size,
cfg.epoch_size)
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)

View File

@ -22,8 +22,8 @@ import os
import argparse
from dataset import create_dataset
from config import mnist_cfg as cfg
from lenet import LeNet5
import mindspore.nn as nn
from mindspore.model_zoo.lenet import LeNet5
from mindspore import context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig

View File

@ -50,11 +50,10 @@ class LeNet5(nn.Cell):
>>> LeNet(num_class=10)
"""
def __init__(self, num_class=10):
def __init__(self, num_class=10, channel=1):
super(LeNet5, self).__init__()
self.num_class = num_class
self.batch_size = 32
self.conv1 = conv(1, 6, 5)
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)

View File

@ -22,8 +22,8 @@ import os
import argparse
from config import mnist_cfg as cfg
from dataset import create_dataset
from lenet import LeNet5
import mindspore.nn as nn
from mindspore.model_zoo.lenet import LeNet5
from mindspore import context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train import Model
@ -36,7 +36,7 @@ if __name__ == "__main__":
help='device where the code will be implemented (default: Ascend)')
parser.add_argument('--data_path', type=str, default="./MNIST_Data",
help='path where the dataset is saved')
parser.add_argument('--dataset_sink_mode', type=bool, default=False, help='dataset_sink_mode is False or True')
parser.add_argument('--dataset_sink_mode', type=bool, default=True, help='dataset_sink_mode is False or True')
args = parser.parse_args()

78
tests/perf_test/lenet.py Normal file
View File

@ -0,0 +1,78 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""LeNet."""
import mindspore.nn as nn
from mindspore.common.initializer import TruncatedNormal
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell):
"""
Lenet network
Args:
num_class (int): Num classes. Default: 10.
Returns:
Tensor, output tensor
Examples:
>>> LeNet(num_class=10)
"""
def __init__(self, num_class=10, channel=1):
super(LeNet5, self).__init__()
self.num_class = num_class
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x

View File

@ -17,12 +17,12 @@
import numpy as np
from lenet import LeNet5
import mindspore.nn as nn
import mindspore.ops.composite as C
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.model_zoo.lenet import LeNet
context.set_context(mode=context.GRAPH_MODE)
@ -61,7 +61,7 @@ def test_compile():
def test_compile_grad():
"""Compile forward and backward graph"""
net = LeNet(num_class=num_class)
net = LeNet5(num_class=num_class)
inp = Tensor(np.array(np.random.randn(batch_size,
channel,
height,

View File

@ -1,46 +0,0 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import mindspore.nn as nn
from mindspore.ops import operations as P
class LeNet(nn.Cell):
def __init__(self):
super(LeNet, self).__init__()
self.relu = P.ReLU()
self.batch_size = 32
self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.reshape = P.Reshape()
self.fc1 = nn.Dense(400, 120)
self.fc2 = nn.Dense(120, 84)
self.fc3 = nn.Dense(84, 10)
def construct(self, input_x):
output = self.conv1(input_x)
output = self.relu(output)
output = self.pool(output)
output = self.conv2(output)
output = self.relu(output)
output = self.pool(output)
output = self.reshape(output, (self.batch_size, -1))
output = self.fc1(output)
output = self.relu(output)
output = self.fc2(output)
output = self.relu(output)
output = self.fc3(output)
return output

View File

@ -26,17 +26,66 @@ import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.dataset.transforms.vision import Inter
from mindspore.model_zoo.lenet import LeNet5
from mindspore.nn import Dense, TrainOneStepCell, WithLossCell
from mindspore.nn.metrics import Accuracy
from mindspore.nn.optim import Momentum
from mindspore.ops import operations as P
from mindspore.train import Model
from mindspore.train.callback import LossMonitor
from mindspore.common.initializer import TruncatedNormal
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell):
def __init__(self, num_class=10, channel=1):
super(LeNet5, self).__init__()
self.num_class = num_class
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x
class LeNet(nn.Cell):
def __init__(self):
super(LeNet, self).__init__()