forked from mindspore-Ecosystem/mindspore
!1665 wide&deep data_process
Merge pull request !1665 from wukesong/data_process
This commit is contained in:
commit
7d763a9162
|
@ -0,0 +1,268 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Criteo data process
|
||||
"""
|
||||
|
||||
import os
|
||||
import pickle
|
||||
import collections
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
TRAIN_LINE_COUNT = 45840617
|
||||
TEST_LINE_COUNT = 6042135
|
||||
|
||||
class CriteoStatsDict():
|
||||
"""create data dict"""
|
||||
def __init__(self):
|
||||
self.field_size = 39 # value_1-13; cat_1-26;
|
||||
self.val_cols = ["val_{}".format(i+1) for i in range(13)]
|
||||
self.cat_cols = ["cat_{}".format(i+1) for i in range(26)]
|
||||
#
|
||||
self.val_min_dict = {col: 0 for col in self.val_cols}
|
||||
self.val_max_dict = {col: 0 for col in self.val_cols}
|
||||
self.cat_count_dict = {col: collections.defaultdict(int) for col in self.cat_cols}
|
||||
#
|
||||
self.oov_prefix = "OOV_"
|
||||
|
||||
self.cat2id_dict = {}
|
||||
self.cat2id_dict.update({col: i for i, col in enumerate(self.val_cols)})
|
||||
self.cat2id_dict.update({self.oov_prefix + col: i + len(self.val_cols) for i, col in enumerate(self.cat_cols)})
|
||||
#
|
||||
def stats_vals(self, val_list):
|
||||
"""vals status"""
|
||||
assert len(val_list) == len(self.val_cols)
|
||||
def map_max_min(i, val):
|
||||
key = self.val_cols[i]
|
||||
if val != "":
|
||||
if float(val) > self.val_max_dict[key]:
|
||||
self.val_max_dict[key] = float(val)
|
||||
if float(val) < self.val_min_dict[key]:
|
||||
self.val_min_dict[key] = float(val)
|
||||
#
|
||||
for i, val in enumerate(val_list):
|
||||
map_max_min(i, val)
|
||||
#
|
||||
def stats_cats(self, cat_list):
|
||||
assert len(cat_list) == len(self.cat_cols)
|
||||
def map_cat_count(i, cat):
|
||||
key = self.cat_cols[i]
|
||||
self.cat_count_dict[key][cat] += 1
|
||||
#
|
||||
for i, cat in enumerate(cat_list):
|
||||
map_cat_count(i, cat)
|
||||
#
|
||||
def save_dict(self, output_path, prefix=""):
|
||||
with open(os.path.join(output_path, "{}val_max_dict.pkl".format(prefix)), "wb") as file_wrt:
|
||||
pickle.dump(self.val_max_dict, file_wrt)
|
||||
with open(os.path.join(output_path, "{}val_min_dict.pkl".format(prefix)), "wb") as file_wrt:
|
||||
pickle.dump(self.val_min_dict, file_wrt)
|
||||
with open(os.path.join(output_path, "{}cat_count_dict.pkl".format(prefix)), "wb") as file_wrt:
|
||||
pickle.dump(self.cat_count_dict, file_wrt)
|
||||
#
|
||||
def load_dict(self, dict_path, prefix=""):
|
||||
with open(os.path.join(dict_path, "{}val_max_dict.pkl".format(prefix)), "rb") as file_wrt:
|
||||
self.val_max_dict = pickle.load(file_wrt)
|
||||
with open(os.path.join(dict_path, "{}val_min_dict.pkl".format(prefix)), "rb") as file_wrt:
|
||||
self.val_min_dict = pickle.load(file_wrt)
|
||||
with open(os.path.join(dict_path, "{}cat_count_dict.pkl".format(prefix)), "rb") as file_wrt:
|
||||
self.cat_count_dict = pickle.load(file_wrt)
|
||||
print("val_max_dict.items()[:50]: {}".format(list(self.val_max_dict.items())))
|
||||
print("val_min_dict.items()[:50]: {}".format(list(self.val_min_dict.items())))
|
||||
#
|
||||
#
|
||||
def get_cat2id(self, threshold=100):
|
||||
"""get cat to id"""
|
||||
# before_all_count = 0
|
||||
# after_all_count = 0
|
||||
for key, cat_count_d in self.cat_count_dict.items():
|
||||
new_cat_count_d = dict(filter(lambda x: x[1] > threshold, cat_count_d.items()))
|
||||
for cat_str, _ in new_cat_count_d.items():
|
||||
self.cat2id_dict[key + "_" + cat_str] = len(self.cat2id_dict)
|
||||
# print("before_all_count: {}".format(before_all_count)) # before_all_count: 33762577
|
||||
# print("after_all_count: {}".format(after_all_count)) # after_all_count: 184926
|
||||
print("cat2id_dict.size: {}".format(len(self.cat2id_dict)))
|
||||
print("cat2id_dict.items()[:50]: {}".format(self.cat2id_dict.items()[:50]))
|
||||
#
|
||||
def map_cat2id(self, values, cats):
|
||||
"""map cat to id"""
|
||||
def minmax_sclae_value(i, val):
|
||||
# min_v = float(self.val_min_dict["val_{}".format(i+1)])
|
||||
max_v = float(self.val_max_dict["val_{}".format(i + 1)])
|
||||
# return (float(val) - min_v) * 1.0 / (max_v - min_v)
|
||||
return float(val) * 1.0 / max_v
|
||||
|
||||
id_list = []
|
||||
weight_list = []
|
||||
for i, val in enumerate(values):
|
||||
if val == "":
|
||||
id_list.append(i)
|
||||
weight_list.append(0)
|
||||
else:
|
||||
key = "val_{}".format(i + 1)
|
||||
id_list.append(self.cat2id_dict[key])
|
||||
weight_list.append(minmax_sclae_value(i, float(val)))
|
||||
#
|
||||
for i, cat_str in enumerate(cats):
|
||||
key = "cat_{}".format(i + 1) + "_" + cat_str
|
||||
if key in self.cat2id_dict:
|
||||
id_list.append(self.cat2id_dict[key])
|
||||
else:
|
||||
id_list.append(self.cat2id_dict[self.oov_prefix + "cat_{}".format(i + 1)])
|
||||
weight_list.append(1.0)
|
||||
return id_list, weight_list
|
||||
#
|
||||
|
||||
|
||||
|
||||
def mkdir_path(file_path):
|
||||
if not os.path.exists(file_path):
|
||||
os.makedirs(file_path)
|
||||
#
|
||||
|
||||
def statsdata(data_file_path, output_path, criteo_stats):
|
||||
"""data status"""
|
||||
with open(data_file_path, encoding="utf-8") as file_in:
|
||||
errorline_list = []
|
||||
count = 0
|
||||
for line in file_in:
|
||||
count += 1
|
||||
line = line.strip("\n")
|
||||
items = line.strip("\t")
|
||||
if len(items) != 40:
|
||||
errorline_list.append(count)
|
||||
print("line: {}".format(line))
|
||||
continue
|
||||
if count % 1000000 == 0:
|
||||
print("Have handle {}w lines.".format(count//10000))
|
||||
# if count % 5000000 == 0:
|
||||
# print("Have handle {}w lines.".format(count//10000))
|
||||
# label = items[0]
|
||||
values = items[1:14]
|
||||
cats = items[14:]
|
||||
assert len(values) == 13, "value.size: {}".format(len(values))
|
||||
assert len(cats) == 26, "cat.size: {}".format(len(cats))
|
||||
criteo_stats.stats_vals(values)
|
||||
criteo_stats.stats_cats(cats)
|
||||
criteo_stats.save_dict(output_path)
|
||||
#
|
||||
|
||||
|
||||
def add_write(file_path, wr_str):
|
||||
with open(file_path, "a", encoding="utf-8") as file_out:
|
||||
file_out.write(wr_str + "\n")
|
||||
#
|
||||
|
||||
|
||||
def random_split_trans2h5(in_file_path, output_path, criteo_stats, part_rows=2000000, test_size=0.1, seed=2020):
|
||||
"""random split trans2h5"""
|
||||
test_size = int(TRAIN_LINE_COUNT * test_size)
|
||||
# train_size = TRAIN_LINE_COUNT - test_size
|
||||
all_indices = [i for i in range(TRAIN_LINE_COUNT)]
|
||||
np.random.seed(seed)
|
||||
np.random.shuffle(all_indices)
|
||||
print("all_indices.size: {}".format(len(all_indices)))
|
||||
# lines_count_dict = collections.defaultdict(int)
|
||||
test_indices_set = set(all_indices[:test_size])
|
||||
print("test_indices_set.size: {}".format(len(test_indices_set)))
|
||||
print("------" * 10 + "\n" * 2)
|
||||
|
||||
train_feature_file_name = os.path.join(output_path, "train_input_part_{}.h5")
|
||||
train_label_file_name = os.path.join(output_path, "train_output_part_{}.h5")
|
||||
test_feature_file_name = os.path.join(output_path, "test_input_part_{}.h5")
|
||||
test_label_file_name = os.path.join(output_path, "test_input_part_{}.h5")
|
||||
train_feature_list = []
|
||||
train_label_list = []
|
||||
test_feature_list = []
|
||||
test_label_list = []
|
||||
with open(in_file_path, encoding="utf-8") as file_in:
|
||||
count = 0
|
||||
train_part_number = 0
|
||||
test_part_number = 0
|
||||
for i, line in enumerate(file_in):
|
||||
count += 1
|
||||
if count % 1000000 == 0:
|
||||
print("Have handle {}w lines.".format(count // 10000))
|
||||
line = line.strip("\n")
|
||||
items = line.split("\t")
|
||||
if len(items) != 40:
|
||||
continue
|
||||
label = float(items[0])
|
||||
values = items[1:14]
|
||||
cats = items[14:]
|
||||
assert len(values) == 13, "value.size: {}".format(len(values))
|
||||
assert len(cats) == 26, "cat.size: {}".format(len(cats))
|
||||
ids, wts = criteo_stats.map_cat2id(values, cats)
|
||||
if i not in test_indices_set:
|
||||
train_feature_list.append(ids + wts)
|
||||
train_label_list.append(label)
|
||||
else:
|
||||
test_feature_list.append(ids + wts)
|
||||
test_label_list.append(label)
|
||||
if train_label_list and (len(train_label_list) % part_rows == 0):
|
||||
pd.DataFrame(np.asarray(train_feature_list)).to_hdf(train_feature_file_name.format(train_part_number),
|
||||
key="fixed")
|
||||
pd.DataFrame(np.asarray(train_label_list)).to_hdf(train_label_file_name.format(train_part_number),
|
||||
key="fixed")
|
||||
train_feature_list = []
|
||||
train_label_list = []
|
||||
train_part_number += 1
|
||||
if test_label_list and (len(test_label_list) % part_rows == 0):
|
||||
pd.DataFrame(np.asarray(test_feature_list)).to_hdf(test_feature_file_name.format(test_part_number),
|
||||
key="fixed")
|
||||
pd.DataFrame(np.asarray(test_label_list)).to_hdf(test_label_file_name.format(test_part_number),
|
||||
key="fixed")
|
||||
test_feature_list = []
|
||||
test_label_list = []
|
||||
test_part_number += 1
|
||||
#
|
||||
if train_label_list:
|
||||
pd.DataFrame(np.asarray(train_feature_list)).to_hdf(train_feature_file_name.format(train_part_number),
|
||||
key="fixed")
|
||||
pd.DataFrame(np.asarray(train_label_list)).to_hdf(train_label_file_name.format(train_part_number),
|
||||
key="fixed")
|
||||
if test_label_list:
|
||||
pd.DataFrame(np.asarray(test_feature_list)).to_hdf(test_feature_file_name.format(test_part_number),
|
||||
key="fixed")
|
||||
pd.DataFrame(np.asarray(test_label_list)).to_hdf(test_label_file_name.format(test_part_number),
|
||||
key="fixed")
|
||||
#
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
parser = argparse.ArgumentParser(description="Get and Process datasets")
|
||||
parser.add_argument("--raw_data_path", default="/opt/npu/data/origin_criteo_data/", help="The path to save dataset")
|
||||
parser.add_argument("--output_path", default="/opt/npu/data/origin_criteo_data/h5_data/",
|
||||
help="The path to save dataset")
|
||||
args, _ = parser.parse_known_args()
|
||||
base_path = args.raw_data_path
|
||||
criteo_stat = CriteoStatsDict()
|
||||
# step 1, stats the vocab and normalize value
|
||||
datafile_path = base_path + "train_small.txt"
|
||||
stats_out_path = base_path + "stats_dict/"
|
||||
mkdir_path(stats_out_path)
|
||||
statsdata(datafile_path, stats_out_path, criteo_stat)
|
||||
print("------" * 10)
|
||||
criteo_stat.load_dict(dict_path=stats_out_path, prefix="")
|
||||
criteo_stat.get_cat2id(threshold=100)
|
||||
# step 2, transform data trans2h5; version 2: np.random.shuffle
|
||||
infile_path = base_path + "train_small.txt"
|
||||
mkdir_path(args.output_path)
|
||||
random_split_trans2h5(infile_path, args.output_path, criteo_stat, part_rows=2000000, test_size=0.1, seed=2020)
|
Loading…
Reference in New Issue