add hsigmoid hswis cpu op

This commit is contained in:
wuxuejian 2021-01-14 09:48:03 +08:00
parent bc372d29a8
commit 77900cf938
10 changed files with 731 additions and 0 deletions

View File

@ -0,0 +1,81 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/hsigmoid_cpu_kernel.h"
#include <algorithm>
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void HSigmoidCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
x_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
dtype_ = AnfAlgo ::GetPrevNodeOutputDeviceDataType(kernel_node, 0);
if (dtype_ == kTypeUnknown) {
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
for (const uint64_t &d : x_shape_) {
tensor_size_ *= d;
}
launch_map_[kNumberTypeInt8] = &HSigmoidCPUKernel::LaunchKernel<int8_t>;
launch_map_[kNumberTypeInt16] = &HSigmoidCPUKernel::LaunchKernel<int16_t>;
launch_map_[kNumberTypeInt32] = &HSigmoidCPUKernel::LaunchKernel<int>;
launch_map_[kNumberTypeInt64] = &HSigmoidCPUKernel::LaunchKernel<int64_t>;
launch_map_[kNumberTypeFloat32] = &HSigmoidCPUKernel::LaunchKernel<float>;
auto iter = launch_map_.find(dtype_);
if (iter != launch_map_.end()) {
launch_func_ = iter->second;
} else {
MS_LOG(EXCEPTION) << "Input data type: " << dtype_ << "is not supported for HSigmoid kernel on CPU.";
}
}
bool HSigmoidCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
launch_func_(this, inputs, outputs);
return true;
}
template <typename T>
void HSigmoidCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
auto x = reinterpret_cast<T *>(inputs[0]->addr);
auto y = reinterpret_cast<T *>(outputs[0]->addr);
for (uint64_t i = 0; i < tensor_size_; ++i) {
if (x[i] <= -3) {
y[i] = 0;
} else if (x[i] >= 3) {
y[i] = 1;
} else {
y[i] = (x[i] + 3) / 6;
}
}
}
void HSigmoidCPUKernel::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but HSigmoidCPUKernel needs 1 input.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but HSigmoidCPUKernel needs 1 output.";
}
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,67 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_
#include <memory>
#include <unordered_map>
#include <vector>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class HSigmoidCPUKernel : public CPUKernel {
public:
HSigmoidCPUKernel() = default;
~HSigmoidCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
std::vector<size_t> x_shape_;
TypeId dtype_{kTypeUnknown};
using TypeKernel = std::function<void(HSigmoidCPUKernel *, const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs)>;
std::unordered_map<TypeId, TypeKernel> launch_map_;
TypeKernel launch_func_;
uint64_t tensor_size_ = 1;
};
MS_REG_CPU_KERNEL(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
HSigmoidCPUKernel);
MS_REG_CPU_KERNEL(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
HSigmoidCPUKernel);
MS_REG_CPU_KERNEL(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
HSigmoidCPUKernel);
MS_REG_CPU_KERNEL(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
HSigmoidCPUKernel);
MS_REG_CPU_KERNEL(HSigmoid, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
HSigmoidCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_

View File

@ -0,0 +1,81 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/hsigmoid_grad_cpu_kernel.h"
#include <algorithm>
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void HSigmoidGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
x_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
dtype_ = AnfAlgo ::GetPrevNodeOutputDeviceDataType(kernel_node, 0);
if (dtype_ == kTypeUnknown) {
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
for (const uint64_t &d : x_shape_) {
tensor_size_ *= d;
}
launch_map_[kNumberTypeInt8] = &HSigmoidGradCPUKernel::LaunchKernel<int8_t>;
launch_map_[kNumberTypeInt16] = &HSigmoidGradCPUKernel::LaunchKernel<int16_t>;
launch_map_[kNumberTypeInt32] = &HSigmoidGradCPUKernel::LaunchKernel<int>;
launch_map_[kNumberTypeInt64] = &HSigmoidGradCPUKernel::LaunchKernel<int64_t>;
launch_map_[kNumberTypeFloat32] = &HSigmoidGradCPUKernel::LaunchKernel<float>;
auto iter = launch_map_.find(dtype_);
if (iter != launch_map_.end()) {
launch_func_ = iter->second;
} else {
MS_LOG(EXCEPTION) << "Input data type: " << dtype_ << "is not supported for HSigmoidGrad kernel on CPU.";
}
}
bool HSigmoidGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
launch_func_(this, inputs, outputs);
return true;
}
template <typename T>
void HSigmoidGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs) {
auto dy = reinterpret_cast<T *>(inputs[0]->addr);
auto x = reinterpret_cast<T *>(inputs[1]->addr);
auto out = reinterpret_cast<T *>(outputs[0]->addr);
for (uint64_t i = 0; i < tensor_size_; ++i) {
if (x[i] <= -3 || x[i] >= 3) {
out[i] = 0;
} else {
out[i] = dy[i] / 6;
}
}
}
void HSigmoidGradCPUKernel::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but HSigmoidGradCPUKernel needs 2 input.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but HSigmoidGradCPUKernel needs 1 output.";
}
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,76 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_
#include <memory>
#include <unordered_map>
#include <vector>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class HSigmoidGradCPUKernel : public CPUKernel {
public:
HSigmoidGradCPUKernel() = default;
~HSigmoidGradCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
std::vector<size_t> x_shape_;
TypeId dtype_{kTypeUnknown};
using TypeKernel = std::function<void(HSigmoidGradCPUKernel *, const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs)>;
std::unordered_map<TypeId, TypeKernel> launch_map_;
TypeKernel launch_func_;
uint64_t tensor_size_ = 1;
};
MS_REG_CPU_KERNEL(
HSigmoidGrad, KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
HSigmoidGradCPUKernel);
MS_REG_CPU_KERNEL(
HSigmoidGrad,
KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
HSigmoidGradCPUKernel);
MS_REG_CPU_KERNEL(
HSigmoidGrad,
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
HSigmoidGradCPUKernel);
MS_REG_CPU_KERNEL(
HSigmoidGrad,
KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
HSigmoidGradCPUKernel);
MS_REG_CPU_KERNEL(
HSigmoidGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
HSigmoidGradCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_

View File

@ -0,0 +1,81 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/hswish_cpu_kernel.h"
#include <algorithm>
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void HSwishCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
x_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
dtype_ = AnfAlgo ::GetPrevNodeOutputDeviceDataType(kernel_node, 0);
if (dtype_ == kTypeUnknown) {
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
for (const uint64_t &d : x_shape_) {
tensor_size_ *= d;
}
launch_map_[kNumberTypeInt8] = &HSwishCPUKernel::LaunchKernel<int8_t>;
launch_map_[kNumberTypeInt16] = &HSwishCPUKernel::LaunchKernel<int16_t>;
launch_map_[kNumberTypeInt32] = &HSwishCPUKernel::LaunchKernel<int>;
launch_map_[kNumberTypeInt64] = &HSwishCPUKernel::LaunchKernel<int64_t>;
launch_map_[kNumberTypeFloat32] = &HSwishCPUKernel::LaunchKernel<float>;
auto iter = launch_map_.find(dtype_);
if (iter != launch_map_.end()) {
launch_func_ = iter->second;
} else {
MS_LOG(EXCEPTION) << "Input data type: " << dtype_ << "is not supported for HSwish kernel on CPU.";
}
}
bool HSwishCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
launch_func_(this, inputs, outputs);
return true;
}
template <typename T>
void HSwishCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
auto x = reinterpret_cast<T *>(inputs[0]->addr);
auto y = reinterpret_cast<T *>(outputs[0]->addr);
for (uint64_t i = 0; i < tensor_size_; ++i) {
if (x[i] <= -3) {
y[i] = 0;
} else if (x[i] >= 3) {
y[i] = x[i];
} else {
y[i] = x[i] * (x[i] + 3) / 6;
}
}
}
void HSwishCPUKernel::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but HSwishCPUKernel needs 1 input.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but HSwishCPUKernel needs 1 output.";
}
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,63 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_
#include <memory>
#include <unordered_map>
#include <vector>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class HSwishCPUKernel : public CPUKernel {
public:
HSwishCPUKernel() = default;
~HSwishCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
std::vector<size_t> x_shape_;
TypeId dtype_{kTypeUnknown};
using TypeKernel = std::function<void(HSwishCPUKernel *, const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs)>;
std::unordered_map<TypeId, TypeKernel> launch_map_;
TypeKernel launch_func_;
uint64_t tensor_size_ = 1;
};
MS_REG_CPU_KERNEL(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8), HSwishCPUKernel);
MS_REG_CPU_KERNEL(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16), HSwishCPUKernel);
MS_REG_CPU_KERNEL(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), HSwishCPUKernel);
MS_REG_CPU_KERNEL(HSwish, KernelAttr().AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64), HSwishCPUKernel);
MS_REG_CPU_KERNEL(HSwish, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
HSwishCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_

View File

@ -0,0 +1,82 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/hswish_grad_cpu_kernel.h"
#include <algorithm>
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void HSwishGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
CheckParam(kernel_node);
x_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1);
dtype_ = AnfAlgo ::GetPrevNodeOutputDeviceDataType(kernel_node, 0);
if (dtype_ == kTypeUnknown) {
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
for (const uint64_t &d : x_shape_) {
tensor_size_ *= d;
}
launch_map_[kNumberTypeInt8] = &HSwishGradCPUKernel::LaunchKernel<int8_t>;
launch_map_[kNumberTypeInt16] = &HSwishGradCPUKernel::LaunchKernel<int16_t>;
launch_map_[kNumberTypeInt32] = &HSwishGradCPUKernel::LaunchKernel<int>;
launch_map_[kNumberTypeInt64] = &HSwishGradCPUKernel::LaunchKernel<int64_t>;
launch_map_[kNumberTypeFloat32] = &HSwishGradCPUKernel::LaunchKernel<float>;
auto iter = launch_map_.find(dtype_);
if (iter != launch_map_.end()) {
launch_func_ = iter->second;
} else {
MS_LOG(EXCEPTION) << "Input data type: " << dtype_ << "is not supported for HSwishGrad kernel on CPU.";
}
}
bool HSwishGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
launch_func_(this, inputs, outputs);
return true;
}
template <typename T>
void HSwishGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
auto dy = reinterpret_cast<T *>(inputs[0]->addr);
auto x = reinterpret_cast<T *>(inputs[1]->addr);
auto out = reinterpret_cast<T *>(outputs[0]->addr);
for (uint64_t i = 0; i < tensor_size_; ++i) {
if (x[i] <= -3) {
out[i] = 0;
} else if (x[i] >= 3) {
out[i] = dy[i];
} else {
out[i] = dy[i] * (2 * x[i] + 3) / 6;
}
}
}
void HSwishGradCPUKernel::CheckParam(const CNodePtr &kernel_node) {
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 2) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but HSwishGradCPUKernel needs 2 input.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 1) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but HSwishGradCPUKernel needs 1 output.";
}
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,76 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_
#include <memory>
#include <unordered_map>
#include <vector>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class HSwishGradCPUKernel : public CPUKernel {
public:
HSwishGradCPUKernel() = default;
~HSwishGradCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
private:
void CheckParam(const CNodePtr &kernel_node);
std::vector<size_t> x_shape_;
TypeId dtype_{kTypeUnknown};
using TypeKernel = std::function<void(HSwishGradCPUKernel *, const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs)>;
std::unordered_map<TypeId, TypeKernel> launch_map_;
TypeKernel launch_func_;
uint64_t tensor_size_ = 1;
};
MS_REG_CPU_KERNEL(
HSwishGrad, KernelAttr().AddInputAttr(kNumberTypeInt8).AddInputAttr(kNumberTypeInt8).AddOutputAttr(kNumberTypeInt8),
HSwishGradCPUKernel);
MS_REG_CPU_KERNEL(
HSwishGrad,
KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeInt16).AddOutputAttr(kNumberTypeInt16),
HSwishGradCPUKernel);
MS_REG_CPU_KERNEL(
HSwishGrad,
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
HSwishGradCPUKernel);
MS_REG_CPU_KERNEL(
HSwishGrad,
KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
HSwishGradCPUKernel);
MS_REG_CPU_KERNEL(
HSwishGrad,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
HSwishGradCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_TILE_CPU_KERNEL_H_

View File

@ -0,0 +1,62 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = GradOperation(get_all=True, sens_param=True)
self.network = network
@ms_function
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.HSigmoid = P.HSigmoid()
def construct(self, x):
return self.HSigmoid(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_net():
x = np.array([-1, -2, 0, 2, 1]).astype(np.float32)
hswish = Net()
y = hswish(Tensor(x))
expect = np.array([0.33333334, 0.16666667, 0.5, 0.8333333, 0.6666667]).astype(np.float32)
assert np.all(y.asnumpy() == expect)
sens = np.random.randn(5).astype(np.float32)
backword_net = Grad(Net())
output = backword_net(Tensor(x), Tensor(sens))
print(len(output))
print(output[0].asnumpy())

View File

@ -0,0 +1,62 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P
from mindspore.ops.composite import GradOperation
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class Grad(nn.Cell):
def __init__(self, network):
super(Grad, self).__init__()
self.grad = GradOperation(get_all=True, sens_param=True)
self.network = network
@ms_function
def construct(self, input_, output_grad):
return self.grad(self.network)(input_, output_grad)
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.HSwish = P.HSwish()
def construct(self, x):
return self.HSwish(x)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_net():
x = np.array([-1, -2, 0, 2, 1]).astype(np.float32)
hswish = Net()
y = hswish(Tensor(x))
expect = np.array([-0.33333334, -0.33333334, 0., 1.6666666, 0.6666667]).astype(np.float32)
assert np.all(y.asnumpy() == expect)
sens = np.random.randn(5).astype(np.float32)
backword_net = Grad(Net())
output = backword_net(Tensor(x), Tensor(sens))
print(len(output))
print(output[0].asnumpy())