modify lenet

This commit is contained in:
wukesong 2020-08-22 16:04:30 +08:00
parent d3733b3b04
commit 762a5c83ca
2 changed files with 364 additions and 119 deletions

View File

@ -1,33 +1,123 @@
# AlexNet Example # Contents
## Description - [AlexNet Description](#alexnet-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Environment Requirements](#environment-requirements)
- [Quick Start](#quick-start)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Training Process](#training-process)
- [Training](#training)
- [Evaluation Process](#evaluation-process)
- [Evaluation](#evaluation)
- [Model Description](#model-description)
- [Performance](#performance)
- [Evaluation Performance](#evaluation-performance)
- [ModelZoo Homepage](#modelzoo-homepage)
Training AlexNet with dataset in MindSpore.
This is the simple tutorial for training AlexNet in MindSpore. # [AlexNet Description](#contents)
## Requirements AlexNet was proposed in 2012, one of the most influential neural networks. It got big success in ImageNet Dataset recognition than other models.
- Install [MindSpore](https://www.mindspore.cn/install/en). [Paper](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf): Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep ConvolutionalNeural Networks. *Advances In Neural Information Processing Systems*. 2012.
# [Model Architecture](#contents)
AlexNet composition consists of 5 convolutional layers and 3 fully connected layers. Multiple convolutional kernels can extract interesting features in images and get more accurate classification.
# [Dataset](#contents)
Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
- Dataset size175M60,000 32*32 colorful images in 10 classes
- Train146M50,000 images
- Test29.3M10,000 images
- Data formatbinary files
- NoteData will be processed in dataset.py
- Download the dataset, the directory structure is as follows: - Download the dataset, the directory structure is as follows:
``` ```
├─10-batches-bin ├─cifar-10-batches-bin
└─10-verify-bin └─cifar-10-verify-bin
``` ```
## Running the example # [Environment Requirements](#contents)
- HardwareAscend/GPU
- Prepare hardware environment with Ascend or GPU processor.
- Framework
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
# [Quick Start](#contents)
After installing MindSpore via the official website, you can start training and evaluation as follows:
```python ```python
# train AlexNet, hyperparameter setting in config.py # enter script dir, train AlexNet
python train.py --data_path 10-batches-bin sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH]
# enter script dir, evaluate AlexNet
sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
``` ```
You will get the loss value of each step as following: # [Script Description](#contents)
```bash ## [Script and Sample Code](#contents)
```
├── model_zoo
├── README.md // descriptions about all the models
├── alexnet
├── README.md // descriptions about alexnet
├── requirements.txt // package needed
├── scripts
│ ├──run_standalone_train_gpu.sh // train in gpu
│ ├──run_standalone_train_ascend.sh // train in ascend
│ ├──run_standalone_eval_gpu.sh // evaluate in gpu
│ ├──run_standalone_eval_ascend.sh // evaluate in ascend
├── src
│ ├──dataset.py // creating dataset
│ ├──alexnet.py // alexnet architecture
│ ├──config.py // parameter configuration
├── train.py // training script
├── eval.py // evaluation script
```
## [Script Parameters](#contents)
```python
Major parameters in train.py and config.py as follows:
--data_path: The absolute full path to the train and evaluation datasets.
--epoch_size: Total training epochs.
--batch_size: Training batch size.
--image_height: Image height used as input to the model.
--image_width: Image width used as input the model.
--device_target: Device where the code will be implemented. Optional values are "Ascend", "GPU".
--checkpoint_path: The absolute full path to the checkpoint file saved after training.
--data_path: Path where the dataset is saved
```
## [Training Process](#contents)
### Training
```
python train.py --data_path cifar-10-batches-bin --ckpt_path ckpt > log.txt 2>&1 &
# or enter script dir, and run the script
sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt
```
After training, the loss value will be achieved as follows:
# grep "loss is " train.log
```
epoch: 1 step: 1, loss is 2.2791853 epoch: 1 step: 1, loss is 2.2791853
... ...
epoch: 1 step: 1536, loss is 1.9366643 epoch: 1 step: 1536, loss is 1.9366643
@ -36,22 +126,52 @@ epoch: 1 step: 1538, loss is 1.0221305
... ...
``` ```
Then, evaluate AlexNet according to network model The model checkpoint will be saved in the current directory.
```python
# evaluate AlexNet ## [Evaluation Process](#contents)
python eval.py --data_path 10-verify-bin --ckpt_path checkpoint_alexnet-1_1562.ckpt
### Evaluation
Before running the command below, please check the checkpoint path used for evaluation.
```
python eval.py --data_path cifar-10-verify-bin --ckpt_path ckpt/checkpoint_alexnet-1_1562.ckpt > log.txt 2>&1 &
or enter script dir, and run the script
sh run_standalone_eval_ascend.sh cifar-10-verify-bin ckpt/checkpoint_alexnet-1_1562.ckpt
``` ```
## Note You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
Here are some optional parameters:
```bash ```
--device_target {Ascend,GPU} # grep "Accuracy: " log.txt
device where the code will be implemented (default: Ascend) 'Accuracy': 0.8832
--data_path DATA_PATH
path where the dataset is saved
--dataset_sink_mode DATASET_SINK_MODE
dataset_sink_mode is False or True
``` ```
You can run ```python train.py -h``` or ```python eval.py -h``` to get more information. # [Model Description](#contents)
## [Performance](#contents)
### Evaluation Performance
| Parameters | AlexNet |
| -------------------------- | ----------------------------------------------------------- |
| Resource | Ascend 910 CPU 2.60GHz56coresMemory314G |
| uploaded Date | 06/09/2020 (month/day/year) |
| MindSpore Version | 0.5.0-beta |
| Dataset | CIFAR-10 |
| Training Parameters | epoch=30, steps=1562, batch_size = 32, lr=0.002 |
| Optimizer | Momentum |
| Loss Function | Softmax Cross Entropy |
| outputs | probability |
| Loss | 0.0016 |
| Speed | 21 ms/step |
| Total time | 17 mins |
| Checkpoint for Fine tuning | 445M (.ckpt file) |
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/alexnet |
# [Description of Random Situation](#contents)
In dataset.py, we set the seed inside “create_dataset" function.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

View File

@ -1,16 +1,44 @@
# LeNet Example # Contents
## Description - [LeNet Description](#lenet-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Environment Requirements](#environment-requirements)
- [Quick Start](#quick-start)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Training Process](#training-process)
- [Training](#training)
- [Evaluation Process](#evaluation-process)
- [Evaluation](#evaluation)
- [Model Description](#model-description)
- [Performance](#performance)
- [Evaluation Performance](#evaluation-performance)
- [ModelZoo Homepage](#modelzoo-homepage)
Training LeNet with dataset in MindSpore.
This is the simple and basic tutorial for constructing a network in MindSpore. # [LeNet Description](#contents)
## Requirements LeNet was proposed in 1998, a typical convolutional neural network. It was used for digit recognition and got big success.
- Install [MindSpore](https://www.mindspore.cn/install/en). [Paper](https://ieeexplore.ieee.org/document/726791): Y.Lecun, L.Bottou, Y.Bengio, P.Haffner. Gradient-Based Learning Applied to Document Recognition. *Proceedings of the IEEE*. 1998.
- Download the dataset, the directory structure is as follows: # [Model Architecture](#contents)
LeNet is very simple, which contains 5 layers. The layer composition consists of 2 convolutional layers and 3 fully connected layers.
# [Dataset](#contents)
Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>)
- Dataset size52.4M60,000 28*28 in 10 classes
- Train60,000 images
- Test10,000 images
- Data formatbinary files
- NoteData will be processed in dataset.py
- The directory structure is as follows:
``` ```
└─Data └─Data
@ -23,40 +51,137 @@ This is the simple and basic tutorial for constructing a network in MindSpore.
train-labels.idx1-ubyte train-labels.idx1-ubyte
``` ```
## Running the example # [Environment Requirements](#contents)
- HardwareAscend/GPU/CPU
- Prepare hardware environment with Ascend, GPU, or CPU processor.
- Framework
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
# [Quick Start](#contents)
After installing MindSpore via the official website, you can start training and evaluation as follows:
```python ```python
# train LeNet, hyperparameter setting in config.py # enter script dir, train LeNet
python train.py --data_path Data sh run_standalone_train_ascend.sh [DATA_PATH] [CKPT_SAVE_PATH]
# enter script dir, evaluate LeNet
sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
``` ```
You will get the loss value of each step as following: # [Script Description](#contents)
```bash ## [Script and Sample Code](#contents)
epoch: 1 step: 1, loss is 2.3040335
```
├── model_zoo
├── README.md // descriptions about all the models
├── lenet
├── README.md // descriptions about lenet
├── requirements.txt // package needed
├── scripts
│ ├──run_standalone_train_cpu.sh // train in cpu
│ ├──run_standalone_train_gpu.sh // train in gpu
│ ├──run_standalone_train_ascend.sh // train in ascend
│ ├──run_standalone_eval_cpu.sh // evaluate in cpu
│ ├──run_standalone_eval_gpu.sh // evaluate in gpu
│ ├──run_standalone_eval_ascend.sh // evaluate in ascend
├── src
│ ├──dataset.py // creating dataset
│ ├──lenet.py // lenet architecture
│ ├──config.py // parameter configuration
├── train.py // training script
├── eval.py // evaluation script
```
## [Script Parameters](#contents)
```python
Major parameters in train.py and config.py as follows:
--data_path: The absolute full path to the train and evaluation datasets.
--epoch_size: Total training epochs.
--batch_size: Training batch size.
--image_height: Image height used as input to the model.
--image_width: Image width used as input the model.
--device_target: Device where the code will be implemented. Optional values
are "Ascend", "GPU", "CPU".
--checkpoint_path: The absolute full path to the checkpoint file saved
after training.
--data_path: Path where the dataset is saved
```
## [Training Process](#contents)
### Training
```
python train.py --data_path Data --ckpt_path ckpt > log.txt 2>&1 &
or enter script dir, and run the script
sh run_standalone_train_ascend.sh Data ckpt
```
After training, the loss value will be achieved as follows:
```
# grep "loss is " log.txt
epoch: 1 step: 1, loss is 2.2791853
... ...
epoch: 1 step: 1739, loss is 0.06952668 epoch: 1 step: 1536, loss is 1.9366643
epoch: 1 step: 1740, loss is 0.05038793 epoch: 1 step: 1537, loss is 1.6983616
epoch: 1 step: 1741, loss is 0.05018193 epoch: 1 step: 1538, loss is 1.0221305
... ...
``` ```
Then, evaluate LeNet according to network model The model checkpoint will be saved in the current directory.
```python
# evaluate LeNet ## [Evaluation Process](#contents)
python eval.py --data_path Data --ckpt_path checkpoint_lenet-1_1875.ckpt
### Evaluation
Before running the command below, please check the checkpoint path used for evaluation.
```
python eval.py --data_path Data --ckpt_path ckpt/checkpoint_lenet-1_1875.ckpt > log.txt 2>&1 &
or enter script dir, and run the script
sh run_standalone_eval_ascend.sh Data ckpt/checkpoint_lenet-1_1875.ckpt
``` ```
## Note You can view the results through the file "log.txt". The accuracy of the test dataset will be as follows:
Here are some optional parameters:
```bash ```
--device_target {Ascend,GPU,CPU} # grep "Accuracy: " log.txt
device where the code will be implemented (default: Ascend) 'Accuracy': 0.9842
--data_path DATA_PATH
path where the dataset is saved
--dataset_sink_mode DATASET_SINK_MODE
dataset_sink_mode is False or True
``` ```
You can run ```python train.py -h``` or ```python eval.py -h``` to get more information. # [Model Description](#contents)
## [Performance](#contents)
### Evaluation Performance
| Parameters | LeNet |
| -------------------------- | ----------------------------------------------------------- |
| Resource | Ascend 910 CPU 2.60GHz56coresMemory314G |
| uploaded Date | 06/09/2020 (month/day/year) |
| MindSpore Version | 0.5.0-beta |
| Dataset | MNIST |
| Training Parameters | epoch=10, steps=1875, batch_size = 32, lr=0.01 |
| Optimizer | Momentum |
| Loss Function | Softmax Cross Entropy |
| outputs | probability |
| Loss | 0.002 |
| Speed | 1.70 ms/step |
| Total time | 43.1s | |
| Checkpoint for Fine tuning | 482k (.ckpt file) |
| Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/lenet |
# [Description of Random Situation](#contents)
In dataset.py, we set the seed inside “create_dataset" function.
# [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).