forked from mindspore-Ecosystem/mindspore
crnn_seq2seq_ocr 310 infer
new file: export.py new file: postprocess.py new file: preprocess.py
This commit is contained in:
parent
98412c8a32
commit
7448133211
|
@ -18,6 +18,10 @@
|
|||
- [Distributed Training](#distributed-training)
|
||||
- [Evaluation Process](#evaluation-process)
|
||||
- [Evaluation](#evaluation)
|
||||
- [Inference Process](#inference-process)
|
||||
- [Export MindIR](#export-mindir)
|
||||
- [Infer on Ascend310](#infer-on-ascend310)
|
||||
- [result](#result)
|
||||
- [Model Description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Training Performance](#training-performance)
|
||||
|
@ -214,6 +218,39 @@ character precision = 0.967522
|
|||
Annotation precision precision = 0.746213
|
||||
```
|
||||
|
||||
## Inference Process
|
||||
|
||||
### [Export MindIR](#contents)
|
||||
|
||||
```shell
|
||||
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||
```
|
||||
|
||||
The ckpt_file parameter is required,
|
||||
`file_format` should be in ["AIR", "MINDIR"]
|
||||
|
||||
### Infer on Ascend310
|
||||
|
||||
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
bash run_infer_310.sh [MINDIR_PATH] [NEED_PREPROCESS] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- `NEED_PREPROCESS` means weather the dataset is processed in binary format, it's value is 'y' or 'n'.
|
||||
- `DEVICE_ID` is optional, default value is 0.
|
||||
|
||||
### result
|
||||
|
||||
Inference result is saved in current path, you can find result like this in acc.log file.
|
||||
|
||||
```bash
|
||||
character precision = 0.967522
|
||||
|
||||
Annotation precision precision = 0.746213
|
||||
```
|
||||
|
||||
# Model Description
|
||||
|
||||
## Performance
|
||||
|
|
|
@ -0,0 +1,14 @@
|
|||
cmake_minimum_required(VERSION 3.14.1)
|
||||
project(Ascend310Infer)
|
||||
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O2 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||
option(MINDSPORE_PATH "mindspore install path" "")
|
||||
include_directories(${MINDSPORE_PATH})
|
||||
include_directories(${MINDSPORE_PATH}/include)
|
||||
include_directories(${PROJECT_SRC_ROOT})
|
||||
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||
|
||||
add_executable(main src/main.cc src/utils.cc)
|
||||
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -0,0 +1,29 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
if [ -d out ]; then
|
||||
rm -rf out
|
||||
fi
|
||||
|
||||
mkdir out
|
||||
cd out || exit
|
||||
|
||||
if [ -f "Makefile" ]; then
|
||||
make clean
|
||||
fi
|
||||
|
||||
cmake .. \
|
||||
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||
make
|
|
@ -0,0 +1,32 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||
|
||||
#include <sys/stat.h>
|
||||
#include <dirent.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include "include/api/types.h"
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName);
|
||||
DIR *OpenDir(std::string_view dirName);
|
||||
std::string RealPath(std::string_view path);
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file);
|
||||
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
|
||||
#endif
|
|
@ -0,0 +1,141 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <sys/time.h>
|
||||
#include <gflags/gflags.h>
|
||||
#include <dirent.h>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <iosfwd>
|
||||
#include <vector>
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include "include/api/model.h"
|
||||
#include "include/api/context.h"
|
||||
#include "include/api/types.h"
|
||||
#include "include/api/serialization.h"
|
||||
#include "include/dataset/execute.h"
|
||||
#include "include/dataset/vision.h"
|
||||
#include "inc/utils.h"
|
||||
|
||||
using mindspore::Context;
|
||||
using mindspore::Serialization;
|
||||
using mindspore::Model;
|
||||
using mindspore::Status;
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::dataset::Execute;
|
||||
using mindspore::ModelType;
|
||||
using mindspore::GraphCell;
|
||||
using mindspore::kSuccess;
|
||||
|
||||
DEFINE_string(mindir_path, "", "mindir path");
|
||||
DEFINE_string(input0_path, ".", "input0 path");
|
||||
DEFINE_string(input1_path, ".", "input1 path");
|
||||
DEFINE_string(input2_path, ".", "input2 path");
|
||||
DEFINE_int32(device_id, 0, "device id");
|
||||
|
||||
int main(int argc, char **argv) {
|
||||
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||
if (RealPath(FLAGS_mindir_path).empty()) {
|
||||
std::cout << "Invalid mindir" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto context = std::make_shared<Context>();
|
||||
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
|
||||
ascend310->SetDeviceID(FLAGS_device_id);
|
||||
context->MutableDeviceInfo().push_back(ascend310);
|
||||
mindspore::Graph graph;
|
||||
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
|
||||
|
||||
Model model;
|
||||
Status ret = model.Build(GraphCell(graph), context);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "ERROR: Build failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::vector<MSTensor> model_inputs = model.GetInputs();
|
||||
if (model_inputs.empty()) {
|
||||
std::cout << "Invalid model, inputs is empty." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto input0_files = GetAllFiles(FLAGS_input0_path);
|
||||
auto input1_files = GetAllFiles(FLAGS_input1_path);
|
||||
auto input2_files = GetAllFiles(FLAGS_input2_path);
|
||||
|
||||
if (input0_files.empty() || input1_files.empty() || input2_files.empty()) {
|
||||
std::cout << "ERROR: input data empty." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::map<double, double> costTime_map;
|
||||
size_t size = input0_files.size();
|
||||
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
struct timeval start = {0};
|
||||
struct timeval end = {0};
|
||||
double startTimeMs;
|
||||
double endTimeMs;
|
||||
std::vector<MSTensor> inputs;
|
||||
std::vector<MSTensor> outputs;
|
||||
std::cout << "Start predict input files:" << input0_files[i] << std::endl;
|
||||
|
||||
auto input0 = ReadFileToTensor(input0_files[i]);
|
||||
auto input1 = ReadFileToTensor(input1_files[i]);
|
||||
auto input2 = ReadFileToTensor(input2_files[i]);
|
||||
|
||||
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
|
||||
input0.Data().get(), input0.DataSize());
|
||||
inputs.emplace_back(model_inputs[1].Name(), model_inputs[1].DataType(), model_inputs[1].Shape(),
|
||||
input1.Data().get(), input1.DataSize());
|
||||
inputs.emplace_back(model_inputs[2].Name(), model_inputs[2].DataType(), model_inputs[2].Shape(),
|
||||
input2.Data().get(), input2.DataSize());
|
||||
|
||||
gettimeofday(&start, nullptr);
|
||||
ret = model.Predict(inputs, &outputs);
|
||||
gettimeofday(&end, nullptr);
|
||||
if (ret != kSuccess) {
|
||||
std::cout << "Predict " << input0_files[i] << " failed." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
|
||||
WriteResult(input0_files[i], outputs);
|
||||
}
|
||||
double average = 0.0;
|
||||
int inferCount = 0;
|
||||
|
||||
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||
double diff = 0.0;
|
||||
diff = iter->second - iter->first;
|
||||
average += diff;
|
||||
inferCount++;
|
||||
}
|
||||
average = average / inferCount;
|
||||
std::stringstream timeCost;
|
||||
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
|
||||
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
|
||||
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
|
||||
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
|
||||
fileStream << timeCost.str();
|
||||
fileStream.close();
|
||||
costTime_map.clear();
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,129 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include "inc/utils.h"
|
||||
|
||||
using mindspore::MSTensor;
|
||||
using mindspore::DataType;
|
||||
|
||||
std::vector<std::string> GetAllFiles(std::string_view dirName) {
|
||||
struct dirent *filename;
|
||||
DIR *dir = OpenDir(dirName);
|
||||
if (dir == nullptr) {
|
||||
return {};
|
||||
}
|
||||
std::vector<std::string> res;
|
||||
while ((filename = readdir(dir)) != nullptr) {
|
||||
std::string dName = std::string(filename->d_name);
|
||||
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
|
||||
continue;
|
||||
}
|
||||
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||
}
|
||||
std::sort(res.begin(), res.end());
|
||||
for (auto &f : res) {
|
||||
std::cout << "image file: " << f << std::endl;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
|
||||
std::string homePath = "./result_Files";
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
size_t outputSize;
|
||||
std::shared_ptr<const void> netOutput;
|
||||
netOutput = outputs[i].Data();
|
||||
outputSize = outputs[i].DataSize();
|
||||
int pos = imageFile.rfind('/');
|
||||
std::string fileName(imageFile, pos + 1);
|
||||
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
|
||||
std::string outFileName = homePath + "/" + fileName;
|
||||
FILE * outputFile = fopen(outFileName.c_str(), "wb");
|
||||
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
|
||||
fclose(outputFile);
|
||||
outputFile = nullptr;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
|
||||
if (file.empty()) {
|
||||
std::cout << "Pointer file is nullptr" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
std::ifstream ifs(file);
|
||||
if (!ifs.good()) {
|
||||
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
if (!ifs.is_open()) {
|
||||
std::cout << "File: " << file << "open failed" << std::endl;
|
||||
return mindspore::MSTensor();
|
||||
}
|
||||
|
||||
ifs.seekg(0, std::ios::end);
|
||||
size_t size = ifs.tellg();
|
||||
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
|
||||
|
||||
ifs.seekg(0, std::ios::beg);
|
||||
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
|
||||
ifs.close();
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
|
||||
DIR *OpenDir(std::string_view dirName) {
|
||||
if (dirName.empty()) {
|
||||
std::cout << " dirName is null ! " << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::string realPath = RealPath(dirName);
|
||||
struct stat s;
|
||||
lstat(realPath.c_str(), &s);
|
||||
if (!S_ISDIR(s.st_mode)) {
|
||||
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
DIR *dir;
|
||||
dir = opendir(realPath.c_str());
|
||||
if (dir == nullptr) {
|
||||
std::cout << "Can not open dir " << dirName << std::endl;
|
||||
return nullptr;
|
||||
}
|
||||
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||
return dir;
|
||||
}
|
||||
|
||||
std::string RealPath(std::string_view path) {
|
||||
char realPathMem[PATH_MAX] = {0};
|
||||
char *realPathRet = nullptr;
|
||||
realPathRet = realpath(path.data(), realPathMem);
|
||||
|
||||
if (realPathRet == nullptr) {
|
||||
std::cout << "File: " << path << " is not exist.";
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string realPath(realPathMem);
|
||||
std::cout << path << " realpath is: " << realPath << std::endl;
|
||||
return realPath;
|
||||
}
|
|
@ -1,4 +1,4 @@
|
|||
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
|
||||
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
|
||||
enable_modelarts: False
|
||||
# Url for modelarts
|
||||
data_url: ""
|
||||
|
@ -59,7 +59,13 @@ adam_beta1: 0.5
|
|||
adam_beta2: 0.999
|
||||
loss_scale: 1024
|
||||
|
||||
#export-related
|
||||
file_name: "crnn-seq2seq-ocr"
|
||||
file_format: "MINDIR"
|
||||
|
||||
#310 infer-related
|
||||
pre_result_path: './preprocess_Result'
|
||||
post_result_path: './result_Files'
|
||||
|
||||
---
|
||||
|
||||
|
|
|
@ -0,0 +1,58 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
export.
|
||||
|
||||
"""
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
from mindspore import context, Tensor
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
||||
|
||||
from src.attention_ocr import AttentionOCRInfer
|
||||
|
||||
from src.model_utils.config import config
|
||||
from src.model_utils.device_adapter import get_device_id
|
||||
|
||||
|
||||
def get_model():
|
||||
'''generate model'''
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target, device_id=get_device_id())
|
||||
# Network
|
||||
network = AttentionOCRInfer(config.eval_batch_size,
|
||||
int(config.img_width / 4),
|
||||
config.encoder_hidden_size,
|
||||
config.decoder_hidden_size,
|
||||
config.decoder_output_size,
|
||||
config.max_length,
|
||||
config.dropout_p)
|
||||
checkpoint_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), config.checkpoint_path)
|
||||
ckpt = load_checkpoint(checkpoint_path)
|
||||
load_param_into_net(network, ckpt)
|
||||
network.set_train(False)
|
||||
print("Checkpoint loading Done!")
|
||||
|
||||
sos_id = config.characters_dictionary.go_id
|
||||
images = Tensor(np.zeros((config.eval_batch_size, 3, config.img_height, config.img_width),
|
||||
dtype=np.float32))
|
||||
decoder_hidden = Tensor(np.zeros((1, config.eval_batch_size, config.decoder_hidden_size),
|
||||
dtype=np.float16))
|
||||
decoder_input = Tensor((np.ones((config.eval_batch_size, 1)) * sos_id).astype(np.int32))
|
||||
inputs = (images, decoder_input, decoder_hidden)
|
||||
export(network, *inputs, file_name=config.file_name, file_format=config.file_format)
|
||||
|
||||
if __name__ == '__main__':
|
||||
get_model()
|
|
@ -0,0 +1,91 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
postprocess.
|
||||
|
||||
"""
|
||||
|
||||
import os
|
||||
import codecs
|
||||
import numpy as np
|
||||
|
||||
from src.utils import initialize_vocabulary
|
||||
from src.model_utils.config import config
|
||||
from eval import text_standardization, LCS_length
|
||||
|
||||
|
||||
def get_acc():
|
||||
'''generate accuracy'''
|
||||
vocab_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), config.vocab_path)
|
||||
_, rev_vocab = initialize_vocabulary(vocab_path)
|
||||
eos_id = config.characters_dictionary.eos_id
|
||||
|
||||
num_correct_char = 0
|
||||
num_total_char = 0
|
||||
num_correct_word = 0
|
||||
num_total_word = 0
|
||||
|
||||
correct_file = 'result_correct.txt'
|
||||
incorrect_file = 'result_incorrect.txt'
|
||||
|
||||
with codecs.open(correct_file, 'w', encoding='utf-8') as fp_output_correct, \
|
||||
codecs.open(incorrect_file, 'w', encoding='utf-8') as fp_output_incorrect:
|
||||
|
||||
file_num = len(os.listdir(config.post_result_path)) // config.max_length
|
||||
for i in range(file_num):
|
||||
batch_decoded_label = []
|
||||
for j in range(config.max_length):
|
||||
f = "ocr_bs" + str(config.eval_batch_size) + "_" + str(i) + "_" + str(j) + ".bin"
|
||||
t = np.fromfile(os.path.join(config.post_result_path, f), np.int32)
|
||||
t = t.reshape(config.eval_batch_size,)
|
||||
batch_decoded_label.append(t)
|
||||
ann_f = os.path.join(config.pre_result_path, "annotation")
|
||||
annotation = np.load(os.path.join(ann_f, "ocr_bs" + str(config.eval_batch_size) + "_" + str(i) + ".npy"))
|
||||
|
||||
for b in range(config.eval_batch_size):
|
||||
text = annotation[b].decode("utf8")
|
||||
text = text_standardization(text)
|
||||
decoded_label = list(np.array(batch_decoded_label)[:, b])
|
||||
decoded_words = []
|
||||
for idx in decoded_label:
|
||||
if idx == eos_id:
|
||||
break
|
||||
else:
|
||||
decoded_words.append(rev_vocab[idx])
|
||||
predict = text_standardization("".join(decoded_words))
|
||||
|
||||
if predict == text:
|
||||
num_correct_word += 1
|
||||
fp_output_correct.write('\t\t' + text + '\n')
|
||||
fp_output_correct.write('\t\t' + predict + '\n\n')
|
||||
print('correctly predicted : pred: {}, gt: {}'.format(predict, text))
|
||||
|
||||
else:
|
||||
fp_output_incorrect.write('\t\t' + text + '\n')
|
||||
fp_output_incorrect.write('\t\t' + predict + '\n\n')
|
||||
print('incorrectly predicted : pred: {}, gt: {}'.format(predict, text))
|
||||
|
||||
num_total_word += 1
|
||||
num_correct_char += 2 * LCS_length(text, predict)
|
||||
num_total_char += len(text) + len(predict)
|
||||
|
||||
print('\nnum of correct characters = %d' % (num_correct_char))
|
||||
print('\nnum of total characters = %d' % (num_total_char))
|
||||
print('\nnum of correct words = %d' % (num_correct_word))
|
||||
print('\nnum of total words = %d' % (num_total_word))
|
||||
print('\ncharacter precision = %f' % (float(num_correct_char) / num_total_char))
|
||||
print('\nAnnotation precision precision = %f' % (float(num_correct_word) / num_total_word))
|
||||
if __name__ == '__main__':
|
||||
get_acc()
|
|
@ -0,0 +1,66 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
preprocess.
|
||||
|
||||
"""
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
from src.dataset import create_ocr_val_dataset
|
||||
from src.model_utils.config import config
|
||||
|
||||
def get_bin():
|
||||
'''generate bin files.'''
|
||||
prefix = "fsns.mindrecord"
|
||||
if config.enable_modelarts:
|
||||
mindrecord_file = os.path.join(config.data_path, prefix + "0")
|
||||
else:
|
||||
mindrecord_file = os.path.join(config.test_data_dir, prefix + "0")
|
||||
print("mindrecord_file", mindrecord_file)
|
||||
dataset = create_ocr_val_dataset(mindrecord_file, config.eval_batch_size)
|
||||
data_loader = dataset.create_dict_iterator(num_epochs=1, output_numpy=True)
|
||||
print("Dataset creation Done!")
|
||||
|
||||
sos_id = config.characters_dictionary.go_id
|
||||
|
||||
images_path = os.path.join(config.pre_result_path, "00_images")
|
||||
decoder_input_path = os.path.join(config.pre_result_path, "01_decoder_input")
|
||||
decoder_hidden_path = os.path.join(config.pre_result_path, "02_decoder_hidden")
|
||||
annotation_path = os.path.join(config.pre_result_path, "annotation")
|
||||
os.makedirs(images_path)
|
||||
os.makedirs(decoder_input_path)
|
||||
os.makedirs(decoder_hidden_path)
|
||||
os.makedirs(annotation_path)
|
||||
|
||||
for i, data in enumerate(data_loader):
|
||||
annotation = data["annotation"]
|
||||
images = data["image"].astype(np.float32)
|
||||
decoder_hidden = np.zeros((1, config.eval_batch_size, config.decoder_hidden_size),
|
||||
dtype=np.float16)
|
||||
decoder_input = (np.ones((config.eval_batch_size, 1)) * sos_id).astype(np.int32)
|
||||
|
||||
file_name = "ocr_bs" + str(config.eval_batch_size) + "_" + str(i) + ".bin"
|
||||
images.tofile(os.path.join(images_path, file_name))
|
||||
decoder_input.tofile(os.path.join(decoder_input_path, file_name))
|
||||
decoder_hidden.tofile(os.path.join(decoder_hidden_path, file_name))
|
||||
|
||||
file_name = "ocr_bs" + str(config.eval_batch_size) + "_" + str(i) + ".npy"
|
||||
np.save(os.path.join(annotation_path, file_name), annotation)
|
||||
print("=" * 10, "export bin files finished.", "=" * 10)
|
||||
|
||||
if __name__ == '__main__':
|
||||
get_bin()
|
|
@ -0,0 +1,121 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [[ $# -lt 2 || $# -gt 3 ]]; then
|
||||
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [NEED_PREPROCESS] [DEVICE_ID]
|
||||
DEVICE_TARGET must choose from ['GPU', 'CPU', 'Ascend']
|
||||
NEED_PREPROCESS means weather need preprocess or not, it's value is 'y' or 'n'.
|
||||
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
model=$(get_real_path $1)
|
||||
|
||||
if [ "$2" == "y" ] || [ "$2" == "n" ];then
|
||||
need_preprocess=$2
|
||||
else
|
||||
echo "weather need preprocess or not, it's value must be in [y, n]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
device_id=0
|
||||
if [ $# == 3 ]; then
|
||||
device_id=$3
|
||||
fi
|
||||
|
||||
echo "mindir name: "$model
|
||||
echo "need preprocess: "$need_preprocess
|
||||
echo "device id: "$device_id
|
||||
|
||||
export ASCEND_HOME=/usr/local/Ascend/
|
||||
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||
else
|
||||
export PATH=$ASCEND_HOME/fwkacllib/bin:$ASCEND_HOME/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||
export LD_LIBRARY_PATH=$ASCEND_HOME/fwkacllib/lib64:/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||
export PYTHONPATH=$ASCEND_HOME/fwkacllib/python/site-packages:$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
|
||||
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||
fi
|
||||
|
||||
function preprocess_data()
|
||||
{
|
||||
if [ -d preprocess_Result ]; then
|
||||
rm -rf ./preprocess_Result
|
||||
fi
|
||||
mkdir preprocess_Result
|
||||
python3.7 ../preprocess.py
|
||||
}
|
||||
|
||||
function compile_app()
|
||||
{
|
||||
cd ../ascend310_infer || exit
|
||||
bash build.sh &> build.log
|
||||
}
|
||||
|
||||
function infer()
|
||||
{
|
||||
cd - || exit
|
||||
if [ -d result_Files ]; then
|
||||
rm -rf ./result_Files
|
||||
fi
|
||||
if [ -d time_Result ]; then
|
||||
rm -rf ./time_Result
|
||||
fi
|
||||
mkdir result_Files
|
||||
mkdir time_Result
|
||||
|
||||
../ascend310_infer/out/main --mindir_path=$model --input0_path=./preprocess_Result/00_images --input1_path=./preprocess_Result/01_decoder_input --input2_path=./preprocess_Result/02_decoder_hidden --device_id=$device_id &> infer.log
|
||||
|
||||
}
|
||||
|
||||
function cal_acc()
|
||||
{
|
||||
python3.7 ../postprocess.py &> acc.log
|
||||
}
|
||||
|
||||
if [ $need_preprocess == "y" ]; then
|
||||
preprocess_data
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "preprocess dataset failed"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
compile_app
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "compile app code failed"
|
||||
exit 1
|
||||
fi
|
||||
infer
|
||||
if [ $? -ne 0 ]; then
|
||||
echo " execute inference failed"
|
||||
exit 1
|
||||
fi
|
||||
cal_acc
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "calculate accuracy failed"
|
||||
exit 1
|
||||
fi
|
Loading…
Reference in New Issue