forked from mindspore-Ecosystem/mindspore
!10963 Modify indices supported dtype of SparseApplyProximalAdagrad.
From: @liu_xiao_93 Reviewed-by: @liangchenghui,@wuxuejian Signed-off-by: @liangchenghui
This commit is contained in:
commit
6c8ded0931
|
@ -5187,7 +5187,7 @@ class SparseApplyProximalAdagrad(PrimitiveWithCheck):
|
|||
- **grad** (Tensor) - A tensor of the same type as `var`, for the gradient.
|
||||
- **indices** (Tensor) - A tensor of indices in the first dimension of `var` and `accum`.
|
||||
If there are duplicates in `indices`, the behavior is undefined. Must be one of the
|
||||
following types: int16, int32, int64, uint16, uint32, uint64.
|
||||
following types: int32, int64.
|
||||
|
||||
Outputs:
|
||||
Tuple of 2 tensors, the updated parameters.
|
||||
|
@ -5253,8 +5253,7 @@ class SparseApplyProximalAdagrad(PrimitiveWithCheck):
|
|||
validator.check_scalar_or_tensor_types_same({"lr": lr_dtype}, [mstype.float16, mstype.float32], self.name)
|
||||
validator.check_scalar_or_tensor_types_same({"l1": l1_dtype}, [mstype.float16, mstype.float32], self.name)
|
||||
validator.check_scalar_or_tensor_types_same({"l2": l2_dtype}, [mstype.float16, mstype.float32], self.name)
|
||||
valid_dtypes = [mstype.int16, mstype.int32, mstype.int64,
|
||||
mstype.uint16, mstype.uint32, mstype.uint64]
|
||||
valid_dtypes = [mstype.int32, mstype.int64]
|
||||
validator.check_tensor_dtype_valid('indices', indices_dtype, valid_dtypes, self.name)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue