Create TensorRow class that supports a row id.

This commit is contained in:
Lixia Chen 2020-06-10 14:22:20 -04:00
parent 4aed2bf9ef
commit 6ae88c3987
30 changed files with 277 additions and 60 deletions

View File

@ -584,7 +584,7 @@ void bindGraphData(py::module *m) {
[](gnn::Graph &g, std::shared_ptr<Tensor> node_list, std::vector<gnn::FeatureType> feature_types) {
TensorRow out;
THROW_IF_ERROR(g.GetNodeFeature(node_list, feature_types, &out));
return out;
return out.getRow();
})
.def("graph_info", [](gnn::Graph &g) {
py::dict out;

View File

@ -11,6 +11,7 @@ add_library(core OBJECT
data_type.cc
global_context.cc
tensor.cc
tensor_row.cc
tensor_shape.cc
)
add_dependencies(core mindspore::protobuf)

View File

@ -51,6 +51,9 @@ constexpr uint32_t kCfgMonitorSamplingInterval = 10;
// Invalid OpenCV type should not be from 0 to 7 (opencv4/opencv2/core/hal/interface.h)
constexpr uint8_t kCVInvalidType = 255;
using connection_id_type = int64_t;
using row_id_type = int64_t;
} // namespace dataset
} // namespace mindspore

View File

@ -44,9 +44,6 @@ class Tensor;
using CharAllocPtr = std::unique_ptr<Allocator<unsigned char>>;
using TensorAllocPtr = std::shared_ptr<Allocator<Tensor>>; // An allocator shared_ptr for Tensors
using TensorRow = std::vector<std::shared_ptr<Tensor>>; // A row is a set of Tensor pointers
using TensorTable = std::vector<TensorRow>; // The table of tensors is a vector of rows
using TensorQTable = std::deque<TensorRow>; // A different flavour of tensor table, this one has queue functionality
class Tensor {
public:

View File

@ -0,0 +1,75 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <utility>
#include "dataset/core/tensor_row.h"
namespace py = pybind11;
namespace mindspore {
namespace dataset {
TensorRow::TensorRow() noexcept : id_(kDefaultRowId) {}
TensorRow::TensorRow(size_type n, TensorRow::value_type t) noexcept : id_(kDefaultRowId), row_(n, t) {}
TensorRow::TensorRow(const TensorRow::vector_type &v) : id_(kDefaultRowId), row_(v) {}
TensorRow::TensorRow(row_id_type id, const std::initializer_list<value_type> &lst) : id_(id), row_(lst) {}
TensorRow::TensorRow(const TensorRow &tr) : id_(tr.id_), row_(tr.row_) {}
TensorRow &TensorRow::operator=(const TensorRow &tr) {
if (this == &tr) {
return *this;
}
row_ = tr.row_;
id_ = tr.id_;
return *this;
}
TensorRow &TensorRow::operator=(const std::initializer_list<TensorRow::value_type> &lst) {
row_ = lst;
return *this;
}
TensorRow::TensorRow(TensorRow::vector_type &&v) noexcept : id_(kDefaultRowId), row_(std::move(v)) {}
TensorRow::TensorRow(row_id_type id, std::initializer_list<value_type> &&lst) noexcept
: id_(id), row_(std::move(lst)) {}
TensorRow::TensorRow(TensorRow &&tr) noexcept {
id_ = tr.id_;
row_ = std::move(tr.row_);
}
TensorRow &TensorRow::operator=(TensorRow &&tr) noexcept {
if (this == &tr) {
return *this;
}
row_ = std::move(tr.row_);
id_ = tr.id_;
tr.id_ = kDefaultRowId;
return *this;
}
TensorRow &TensorRow::operator=(std::initializer_list<TensorRow::value_type> &&lst) noexcept {
row_ = std::move(lst);
return *this;
}
} // namespace dataset
} // namespace mindspore

View File

@ -0,0 +1,131 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef DATASET_CORE_TENSOR_ROW_H_
#define DATASET_CORE_TENSOR_ROW_H_
#include <deque>
#include <memory>
#include <vector>
#include "dataset/core/tensor.h"
namespace mindspore {
namespace dataset {
class TensorRow; // A set of Tensor pointers with an id
using TensorTable = std::vector<TensorRow>; // The table of tensors is a vector of rows
using TensorQTable = std::deque<TensorRow>; // A different flavour of tensor table, this one has queue functionality
class TensorRow {
public:
static constexpr row_id_type kDefaultRowId = -1; // Default row id
// Type definitions
typedef dsize_t size_type;
typedef std::shared_ptr<Tensor> value_type;
typedef std::shared_ptr<Tensor> &reference;
typedef const std::shared_ptr<Tensor> &const_reference;
typedef std::vector<std::shared_ptr<Tensor>> vector_type;
typedef std::vector<std::shared_ptr<Tensor>>::iterator iterator;
typedef std::vector<std::shared_ptr<Tensor>>::const_iterator const_iterator;
TensorRow() noexcept;
TensorRow(size_type n, value_type t) noexcept;
// Copy Constructors
explicit TensorRow(const vector_type &v);
TensorRow(row_id_type id, const std::initializer_list<value_type> &lst);
TensorRow(const TensorRow &tr);
TensorRow &operator=(const TensorRow &tr);
TensorRow &operator=(const std::initializer_list<value_type> &lst);
// Move Constructors
explicit TensorRow(vector_type &&v) noexcept;
TensorRow(row_id_type id, std::initializer_list<value_type> &&lst) noexcept;
TensorRow(TensorRow &&tr) noexcept;
TensorRow &operator=(TensorRow &&tr) noexcept;
TensorRow &operator=(std::initializer_list<value_type> &&lst) noexcept;
// Destructor
~TensorRow() = default;
// Functions to fetch/set id/vector
row_id_type getId() const { return id_; }
void setId(row_id_type id) { id_ = id; }
const vector_type &getRow() const { return row_; }
// Wrapper functions to support vector operations
void emplace_back(value_type t) { row_.emplace_back(t); }
void push_back(value_type t) { row_.push_back(t); }
void clear() noexcept { row_.clear(); }
size_type size() const noexcept { return row_.size(); }
void reserve(size_type size) { row_.reserve(size); }
void resize(size_type size) { row_.resize(size); }
bool empty() { return row_.empty(); }
void insert(iterator position, iterator first, iterator last) { row_.insert(position, first, last); }
// Wrapper functions to support vector element access
reference at(size_type index) { return row_.at(index); }
const_reference at(size_type index) const { return row_.at(index); }
reference front() { return row_.front(); }
const_reference front() const { return row_.front(); }
reference back() { return row_.back(); }
const_reference back() const { return row_.back(); }
reference operator[](size_type index) { return row_[index]; }
const_reference operator[](size_type index) const { return row_[index]; }
// Wrapper functions to support vector iteration
iterator begin() { return row_.begin(); }
const_iterator begin() const { return row_.begin(); }
iterator end() { return row_.end(); }
const_iterator end() const { return row_.end(); }
protected:
row_id_type id_;
std::vector<std::shared_ptr<Tensor>> row_;
};
} // namespace dataset
} // namespace mindspore
#endif // DATASET_CORE_TENSOR_ROW_H_

View File

@ -25,6 +25,7 @@
#include "dataset/util/status.h"
#include "dataset/core/constants.h"
#include "dataset/core/tensor.h"
#include "dataset/core/tensor_row.h"
namespace mindspore {
namespace dataset {

View File

@ -36,7 +36,7 @@ namespace mindspore {
namespace dataset {
class DataBuffer;
using TensorBatch = std::vector<std::shared_ptr<Tensor>>;
using TensorBatch = TensorRow;
using TensorBatchTable = std::vector<TensorBatch>;
using PadInfo = std::map<std::string, std::pair<TensorShape, std::shared_ptr<Tensor>>>;

View File

@ -349,7 +349,7 @@ Status CelebAOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<Da
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
for (const auto &key : keys) {
TensorRow row;
RETURN_IF_NOT_OK(LoadTensorRow(image_labels_vec_[key], &row));
RETURN_IF_NOT_OK(LoadTensorRow(key, image_labels_vec_[key], &row));
deq->push_back(std::move(row));
}
@ -357,7 +357,8 @@ Status CelebAOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<Da
return Status::OK();
}
Status CelebAOp::LoadTensorRow(const std::pair<std::string, std::vector<int32_t>> &image_label, TensorRow *row) {
Status CelebAOp::LoadTensorRow(row_id_type row_id, const std::pair<std::string, std::vector<int32_t>> &image_label,
TensorRow *row) {
std::shared_ptr<Tensor> image;
std::shared_ptr<Tensor> label;
@ -398,7 +399,7 @@ Status CelebAOp::LoadTensorRow(const std::pair<std::string, std::vector<int32_t>
}
label->Squeeze();
(*row) = {std::move(image), std::move(label)};
(*row) = TensorRow(row_id, {std::move(image), std::move(label)});
return Status::OK();
}

View File

@ -197,10 +197,12 @@ class CelebAOp : public ParallelOp, RandomAccessOp {
Status LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db);
// Load a tensor row according to a pair
// @param row_id_type row_id - id for this tensor row
// @param std::pair - <image_file,<label>>
// @param TensorRow row - image & label read into this tensor row
// @return Status - The error code return
Status LoadTensorRow(const std::pair<std::string, std::vector<int32_t>> &image_label, TensorRow *row);
Status LoadTensorRow(row_id_type row_id, const std::pair<std::string, std::vector<int32_t>> &image_label,
TensorRow *row);
// Check if need read according to dataset type
// @return bool - if need read

View File

@ -203,9 +203,9 @@ Status CifarOp::LoadTensorRow(uint64_t index, TensorRow *trow) {
RETURN_IF_NOT_OK(Tensor::CreateTensor(
&fine_label, data_schema_->column(2).tensorImpl(), data_schema_->column(2).shape(),
data_schema_->column(2).type(), reinterpret_cast<unsigned char *>(&cifar_image_label_pairs_[index].second[1])));
(*trow) = {copy_image, std::move(label), std::move(fine_label)};
(*trow) = TensorRow(index, {copy_image, std::move(label), std::move(fine_label)});
} else {
(*trow) = {copy_image, std::move(label)};
(*trow) = TensorRow(index, {copy_image, std::move(label)});
}
return Status::OK();

View File

@ -213,7 +213,7 @@ Status CocoOp::Reset() {
return Status::OK();
}
Status CocoOp::LoadTensorRow(const std::string &image_id, TensorRow *trow) {
Status CocoOp::LoadTensorRow(row_id_type row_id, const std::string &image_id, TensorRow *trow) {
std::shared_ptr<Tensor> image, coordinate;
auto itr = coordinate_map_.find(image_id);
if (itr == coordinate_map_.end()) RETURN_STATUS_UNEXPECTED("Invalid image_id found :" + image_id);
@ -246,11 +246,11 @@ Status CocoOp::LoadTensorRow(const std::string &image_id, TensorRow *trow) {
data_schema_->column(1).type(),
reinterpret_cast<unsigned char *>(&bbox_row[0])));
if (task_type_ == TaskType::Detection) {
RETURN_IF_NOT_OK(LoadDetectionTensorRow(image_id, image, coordinate, trow));
RETURN_IF_NOT_OK(LoadDetectionTensorRow(row_id, image_id, image, coordinate, trow));
} else if (task_type_ == TaskType::Stuff || task_type_ == TaskType::Keypoint) {
RETURN_IF_NOT_OK(LoadSimpleTensorRow(image_id, image, coordinate, trow));
RETURN_IF_NOT_OK(LoadSimpleTensorRow(row_id, image_id, image, coordinate, trow));
} else if (task_type_ == TaskType::Panoptic) {
RETURN_IF_NOT_OK(LoadMixTensorRow(image_id, image, coordinate, trow));
RETURN_IF_NOT_OK(LoadMixTensorRow(row_id, image_id, image, coordinate, trow));
} else {
RETURN_STATUS_UNEXPECTED("Invalid task type.");
}
@ -265,7 +265,7 @@ Status CocoOp::LoadTensorRow(const std::string &image_id, TensorRow *trow) {
// column ["iscrowd"] with datatype=uint32
// By the way, column ["iscrowd"] is used for some testcases, like fasterRcnn.
// If "iscrowd" is not existed, user will get default value 0.
Status CocoOp::LoadDetectionTensorRow(const std::string &image_id, std::shared_ptr<Tensor> image,
Status CocoOp::LoadDetectionTensorRow(row_id_type row_id, const std::string &image_id, std::shared_ptr<Tensor> image,
std::shared_ptr<Tensor> coordinate, TensorRow *trow) {
std::shared_ptr<Tensor> category_id, iscrowd;
std::vector<uint32_t> category_id_row;
@ -288,7 +288,7 @@ Status CocoOp::LoadDetectionTensorRow(const std::string &image_id, std::shared_p
RETURN_IF_NOT_OK(Tensor::CreateTensor(
&iscrowd, data_schema_->column(3).tensorImpl(), TensorShape({static_cast<dsize_t>(iscrowd_row.size()), 1}),
data_schema_->column(3).type(), reinterpret_cast<unsigned char *>(&iscrowd_row[0])));
(*trow) = {std::move(image), std::move(coordinate), std::move(category_id), std::move(iscrowd)};
(*trow) = TensorRow(row_id, {std::move(image), std::move(coordinate), std::move(category_id), std::move(iscrowd)});
return Status::OK();
}
@ -296,7 +296,7 @@ Status CocoOp::LoadDetectionTensorRow(const std::string &image_id, std::shared_p
// column ["image"] with datatype=uint8
// column ["segmentation"]/["keypoints"] with datatype=float32
// column ["iscrowd"]/["num_keypoints"] with datatype=uint32
Status CocoOp::LoadSimpleTensorRow(const std::string &image_id, std::shared_ptr<Tensor> image,
Status CocoOp::LoadSimpleTensorRow(row_id_type row_id, const std::string &image_id, std::shared_ptr<Tensor> image,
std::shared_ptr<Tensor> coordinate, TensorRow *trow) {
std::shared_ptr<Tensor> item;
std::vector<uint32_t> item_queue;
@ -308,7 +308,7 @@ Status CocoOp::LoadSimpleTensorRow(const std::string &image_id, std::shared_ptr<
RETURN_IF_NOT_OK(Tensor::CreateTensor(&item, data_schema_->column(2).tensorImpl(), TensorShape(bbox_dim),
data_schema_->column(2).type(),
reinterpret_cast<unsigned char *>(&item_queue[0])));
(*trow) = {std::move(image), std::move(coordinate), std::move(item)};
(*trow) = TensorRow(row_id, {std::move(image), std::move(coordinate), std::move(item)});
return Status::OK();
}
@ -318,7 +318,7 @@ Status CocoOp::LoadSimpleTensorRow(const std::string &image_id, std::shared_ptr<
// column ["category_id"] with datatype=uint32
// column ["iscrowd"] with datatype=uint32
// column ["area"] with datattype=uint32
Status CocoOp::LoadMixTensorRow(const std::string &image_id, std::shared_ptr<Tensor> image,
Status CocoOp::LoadMixTensorRow(row_id_type row_id, const std::string &image_id, std::shared_ptr<Tensor> image,
std::shared_ptr<Tensor> coordinate, TensorRow *trow) {
std::shared_ptr<Tensor> category_id, iscrowd, area;
std::vector<uint32_t> category_id_row;
@ -349,15 +349,16 @@ Status CocoOp::LoadMixTensorRow(const std::string &image_id, std::shared_ptr<Ten
RETURN_IF_NOT_OK(Tensor::CreateTensor(
&area, data_schema_->column(4).tensorImpl(), TensorShape({static_cast<dsize_t>(area_row.size()), 1}),
data_schema_->column(4).type(), reinterpret_cast<unsigned char *>(&area_row[0])));
(*trow) = {std::move(image), std::move(coordinate), std::move(category_id), std::move(iscrowd), std::move(area)};
(*trow) = TensorRow(
row_id, {std::move(image), std::move(coordinate), std::move(category_id), std::move(iscrowd), std::move(area)});
return Status::OK();
}
Status CocoOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataBuffer> *db) {
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
TensorRow trow;
for (const uint64_t &key : keys) {
RETURN_IF_NOT_OK(this->LoadTensorRow(image_ids_[key], &trow));
for (const int64_t &key : keys) {
RETURN_IF_NOT_OK(this->LoadTensorRow(key, image_ids_[key], &trow));
deq->push_back(std::move(trow));
}
(*db)->set_tensor_table(std::move(deq));

View File

@ -205,36 +205,40 @@ class CocoOp : public ParallelOp, public RandomAccessOp {
Status InitSampler();
// Load a tensor row according to image id
// @param row_id_type row_id - id for this tensor row
// @param std::string image_id - image id
// @param TensorRow row - image & target read into this tensor row
// @return Status - The error code return
Status LoadTensorRow(const std::string &image_id, TensorRow *row);
Status LoadTensorRow(row_id_type row_id, const std::string &image_id, TensorRow *row);
// Load a tensor row with vector which a vector to a tensor
// @param row_id_type row_id - id for this tensor row
// @param const std::string &image_id - image is
// @param std::shared_ptr<Tensor> image - image tensor
// @param std::shared_ptr<Tensor> coordinate - coordinate tensor
// @param TensorRow row - image & target read into this tensor row
// @return Status - The error code return
Status LoadDetectionTensorRow(const std::string &image_id, std::shared_ptr<Tensor> image,
Status LoadDetectionTensorRow(row_id_type row_id, const std::string &image_id, std::shared_ptr<Tensor> image,
std::shared_ptr<Tensor> coordinate, TensorRow *trow);
// Load a tensor row with vector which a vector to a tensor
// @param row_id_type row_id - id for this tensor row
// @param const std::string &image_id - image is
// @param std::shared_ptr<Tensor> image - image tensor
// @param std::shared_ptr<Tensor> coordinate - coordinate tensor
// @param TensorRow row - image & target read into this tensor row
// @return Status - The error code return
Status LoadSimpleTensorRow(const std::string &image_id, std::shared_ptr<Tensor> image,
Status LoadSimpleTensorRow(row_id_type row_id, const std::string &image_id, std::shared_ptr<Tensor> image,
std::shared_ptr<Tensor> coordinate, TensorRow *trow);
// Load a tensor row with vector which a vector to multi-tensor
// @param row_id_type row_id - id for this tensor row
// @param const std::string &image_id - image is
// @param std::shared_ptr<Tensor> image - image tensor
// @param std::shared_ptr<Tensor> coordinate - coordinate tensor
// @param TensorRow row - image & target read into this tensor row
// @return Status - The error code return
Status LoadMixTensorRow(const std::string &image_id, std::shared_ptr<Tensor> image,
Status LoadMixTensorRow(row_id_type row_id, const std::string &image_id, std::shared_ptr<Tensor> image,
std::shared_ptr<Tensor> coordinate, TensorRow *trow);
// @param const std::string &path - path to the image file

View File

@ -199,7 +199,7 @@ Status ImageFolderOp::WorkerEntry(int32_t worker_id) {
}
// Load 1 TensorRow (image,label) using 1 ImageLabelPair. 1 function call produces 1 TensorTow in a DataBuffer
Status ImageFolderOp::LoadTensorRow(ImageLabelPair pairPtr, TensorRow *trow) {
Status ImageFolderOp::LoadTensorRow(row_id_type row_id, ImageLabelPair pairPtr, TensorRow *trow) {
std::shared_ptr<Tensor> image, label;
RETURN_IF_NOT_OK(Tensor::CreateTensor(&label, data_schema_->column(1).tensorImpl(), data_schema_->column(1).shape(),
data_schema_->column(1).type(),
@ -223,7 +223,7 @@ Status ImageFolderOp::LoadTensorRow(ImageLabelPair pairPtr, TensorRow *trow) {
RETURN_STATUS_UNEXPECTED(err);
}
}
(*trow) = {std::move(image), std::move(label)};
(*trow) = TensorRow(row_id, {std::move(image), std::move(label)});
return Status::OK();
}
@ -232,7 +232,7 @@ Status ImageFolderOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_p
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
TensorRow trow;
for (const int64_t &key : keys) {
RETURN_IF_NOT_OK(this->LoadTensorRow(image_label_pairs_[key], &trow));
RETURN_IF_NOT_OK(this->LoadTensorRow(key, image_label_pairs_[key], &trow));
deq->push_back(std::move(trow));
}
(*db)->set_tensor_table(std::move(deq));

View File

@ -220,10 +220,11 @@ class ImageFolderOp : public ParallelOp, public RandomAccessOp {
Status InitSampler();
// Load a tensor row according to a pair
// @param row_id_type row_id - id for this tensor row
// @param ImageLabelPair pair - <imagefile,label>
// @param TensorRow row - image & label read into this tensor row
// @return Status - The error code return
Status LoadTensorRow(ImageLabelPair pair, TensorRow *row);
Status LoadTensorRow(row_id_type row_id, ImageLabelPair pair, TensorRow *row);
// @param const std::vector<int64_t> &keys - keys in ioblock
// @param std::unique_ptr<DataBuffer> db

View File

@ -182,7 +182,8 @@ Status ManifestOp::WorkerEntry(int32_t worker_id) {
}
// Load 1 TensorRow (image,label) using 1 ImageLabelPair. 1 function call produces 1 TensorTow in a DataBuffer
Status ManifestOp::LoadTensorRow(const std::pair<std::string, std::vector<std::string>> &data, TensorRow *trow) {
Status ManifestOp::LoadTensorRow(row_id_type row_id, const std::pair<std::string, std::vector<std::string>> &data,
TensorRow *trow) {
std::shared_ptr<Tensor> image;
std::shared_ptr<Tensor> label;
std::vector<int32_t> label_index(data.second.size());
@ -222,7 +223,7 @@ Status ManifestOp::LoadTensorRow(const std::pair<std::string, std::vector<std::s
RETURN_STATUS_UNEXPECTED(err);
}
}
(*trow) = {std::move(image), std::move(label)};
(*trow) = TensorRow(row_id, {std::move(image), std::move(label)});
return Status::OK();
}
@ -231,7 +232,7 @@ Status ManifestOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
for (const auto &key : keys) {
TensorRow trow;
RETURN_IF_NOT_OK(LoadTensorRow(image_labelname_[static_cast<size_t>(key)], &trow));
RETURN_IF_NOT_OK(LoadTensorRow(key, image_labelname_[static_cast<size_t>(key)], &trow));
deq->push_back(std::move(trow));
}
(*db)->set_tensor_table(std::move(deq));

View File

@ -187,10 +187,12 @@ class ManifestOp : public ParallelOp, public RandomAccessOp {
Status AddIoBlock(std::unique_ptr<DataBuffer> *sampler_buffer);
// Load a tensor row according to a pair
// @param row_id_type row_id - id for this tensor row
// @param std::pair<std::string, std::vector<std::string>> - <imagefile, <label1, label2...>>
// @param TensorRow row - image & label read into this tensor row
// @return Status - The error code return
Status LoadTensorRow(const std::pair<std::string, std::vector<std::string>> &data, TensorRow *row);
Status LoadTensorRow(row_id_type row_id, const std::pair<std::string, std::vector<std::string>> &data,
TensorRow *row);
// @param const std::vector<int64_t> &keys - keys in ioblock
// @param std::unique_ptr<DataBuffer> db

View File

@ -162,7 +162,7 @@ Status MnistOp::WorkerEntry(int32_t worker_id) {
}
// Load 1 TensorRow (image,label) using 1 MnistLabelPair.
Status MnistOp::LoadTensorRow(const MnistLabelPair &mnist_pair, TensorRow *trow) {
Status MnistOp::LoadTensorRow(row_id_type row_id, const MnistLabelPair &mnist_pair, TensorRow *trow) {
std::shared_ptr<Tensor> image, label;
int32_t l = mnist_pair.second;
// make a copy of cached tensor
@ -170,7 +170,7 @@ Status MnistOp::LoadTensorRow(const MnistLabelPair &mnist_pair, TensorRow *trow)
mnist_pair.first->type(), mnist_pair.first->GetMutableBuffer()));
RETURN_IF_NOT_OK(Tensor::CreateTensor(&label, data_schema_->column(1).tensorImpl(), data_schema_->column(1).shape(),
data_schema_->column(1).type(), reinterpret_cast<unsigned char *>(&l)));
(*trow) = {std::move(image), std::move(label)};
(*trow) = TensorRow(row_id, {std::move(image), std::move(label)});
return Status::OK();
}
@ -179,7 +179,7 @@ Status MnistOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<Dat
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
TensorRow trow;
for (const int64_t &key : keys) {
RETURN_IF_NOT_OK(this->LoadTensorRow(image_label_pairs_[key], &trow));
RETURN_IF_NOT_OK(this->LoadTensorRow(key, image_label_pairs_[key], &trow));
deq->push_back(std::move(trow));
}
(*db)->set_tensor_table(std::move(deq));

View File

@ -162,10 +162,11 @@ class MnistOp : public ParallelOp, public RandomAccessOp {
Status InitSampler();
// Load a tensor row according to a pair
// @param row_id_type row_id - id for this tensor row
// @param ImageLabelPair pair - <imagefile,label>
// @param TensorRow row - image & label read into this tensor row
// @return Status - The error code return
Status LoadTensorRow(const MnistLabelPair &mnist_pair, TensorRow *row);
Status LoadTensorRow(row_id_type row_id, const MnistLabelPair &mnist_pair, TensorRow *row);
// @param const std::vector<int64_t> &keys - keys in ioblock
// @param std::unique_ptr<DataBuffer> db

View File

@ -183,7 +183,7 @@ Status VOCOp::Reset() {
return Status::OK();
}
Status VOCOp::LoadTensorRow(const std::string &image_id, TensorRow *trow) {
Status VOCOp::LoadTensorRow(row_id_type row_id, const std::string &image_id, TensorRow *trow) {
if (task_type_ == TaskType::Segmentation) {
std::shared_ptr<Tensor> image, target;
const std::string kImageFile =
@ -192,7 +192,7 @@ Status VOCOp::LoadTensorRow(const std::string &image_id, TensorRow *trow) {
folder_path_ + std::string(kSegmentationClassFolder) + image_id + std::string(kSegmentationExtension);
RETURN_IF_NOT_OK(ReadImageToTensor(kImageFile, data_schema_->column(0), &image));
RETURN_IF_NOT_OK(ReadImageToTensor(kTargetFile, data_schema_->column(1), &target));
(*trow) = {std::move(image), std::move(target)};
(*trow) = TensorRow(row_id, {std::move(image), std::move(target)});
} else if (task_type_ == TaskType::Detection) {
std::shared_ptr<Tensor> image, annotation;
const std::string kImageFile =
@ -201,7 +201,7 @@ Status VOCOp::LoadTensorRow(const std::string &image_id, TensorRow *trow) {
folder_path_ + std::string(kAnnotationsFolder) + image_id + std::string(kAnnotationExtension);
RETURN_IF_NOT_OK(ReadImageToTensor(kImageFile, data_schema_->column(0), &image));
RETURN_IF_NOT_OK(ReadAnnotationToTensor(kAnnotationFile, data_schema_->column(1), &annotation));
(*trow) = {std::move(image), std::move(annotation)};
(*trow) = TensorRow(row_id, {std::move(image), std::move(annotation)});
}
return Status::OK();
}
@ -210,7 +210,7 @@ Status VOCOp::LoadBuffer(const std::vector<int64_t> &keys, std::unique_ptr<DataB
std::unique_ptr<TensorQTable> deq = std::make_unique<TensorQTable>();
TensorRow trow;
for (const uint64_t &key : keys) {
RETURN_IF_NOT_OK(this->LoadTensorRow(image_ids_[key], &trow));
RETURN_IF_NOT_OK(this->LoadTensorRow(key, image_ids_[key], &trow));
deq->push_back(std::move(trow));
}
(*db)->set_tensor_table(std::move(deq));

View File

@ -215,10 +215,11 @@ class VOCOp : public ParallelOp, public RandomAccessOp {
Status InitSampler();
// Load a tensor row according to image id
// @param row_id_type row_id - id for this tensor row
// @param std::string image_id - image id
// @param TensorRow row - image & target read into this tensor row
// @return Status - The error code return
Status LoadTensorRow(const std::string &image_id, TensorRow *row);
Status LoadTensorRow(row_id_type row_id, const std::string &image_id, TensorRow *row);
// @param const std::string &path - path to the image file
// @param const ColDescriptor &col - contains tensor implementation and datatype

View File

@ -24,6 +24,7 @@
#include <vector>
#include "dataset/core/tensor.h"
#include "dataset/core/tensor_row.h"
#include "dataset/engine/gnn/graph_loader.h"
#include "dataset/engine/gnn/feature.h"
#include "dataset/engine/gnn/node.h"

View File

@ -26,6 +26,7 @@
#include "dataset/core/data_type.h"
#include "dataset/core/tensor.h"
#include "dataset/core/tensor_row.h"
namespace mindspore {
namespace dataset {

View File

@ -27,8 +27,7 @@ UniformAugOp::UniformAugOp(std::vector<std::shared_ptr<TensorOp>> op_list, int32
}
// compute method to apply uniformly random selected augmentations from a list
Status UniformAugOp::Compute(const std::vector<std::shared_ptr<Tensor>> &input,
std::vector<std::shared_ptr<Tensor>> *output) {
Status UniformAugOp::Compute(const TensorRow &input, TensorRow *output) {
IO_CHECK_VECTOR(input, output);
// randomly select ops to be applied

View File

@ -44,8 +44,7 @@ class UniformAugOp : public TensorOp {
// Overrides the base class compute function
// @return Status - The error code return
Status Compute(const std::vector<std::shared_ptr<Tensor>> &input,
std::vector<std::shared_ptr<Tensor>> *output) override;
Status Compute(const TensorRow &input, TensorRow *output) override;
private:
int32_t num_ops_;

View File

@ -24,8 +24,7 @@
namespace mindspore {
namespace dataset {
Status PyFuncOp::Compute(const std::vector<std::shared_ptr<Tensor>> &input,
std::vector<std::shared_ptr<Tensor>> *output) {
Status PyFuncOp::Compute(const TensorRow &input, TensorRow *output) {
IO_CHECK_VECTOR(input, output);
Status ret = Status(StatusCode::kOK, "PyFunc Call Succeed");
{

View File

@ -36,8 +36,7 @@ class __attribute__((visibility("hidden"))) PyFuncOp : public TensorOp {
uint32_t NumOutput() override { return 0; }
// Compute function for n-n mapping.
Status Compute(const std::vector<std::shared_ptr<Tensor>> &input,
std::vector<std::shared_ptr<Tensor>> *output) override;
Status Compute(const TensorRow &input, TensorRow *output) override;
private:
py::function py_func_ptr_;

View File

@ -37,8 +37,7 @@ Status TensorOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<T
// Name: Compute()
// Description: This Compute() take multiple Tensors from different columns and produce multiple Tensors too.
// The derived class should override this function otherwise error.
Status TensorOp::Compute(const std::vector<std::shared_ptr<Tensor>> &input,
std::vector<std::shared_ptr<Tensor>> *output) {
Status TensorOp::Compute(const TensorRow &input, TensorRow *output) {
IO_CHECK_VECTOR(input, output);
if (OneToOne()) {
output->resize(1);

View File

@ -21,6 +21,7 @@
#include <vector>
#include "dataset/core/tensor.h"
#include "dataset/core/tensor_row.h"
#include "dataset/util/status.h"
#define IO_CHECK(input, output) \
@ -75,8 +76,7 @@ class TensorOp {
// @param input is a vector of shared_ptr to Tensor (pass by const reference).
// @param output is the address to an empty vector of shared_ptr to Tensor.
// @return Status
virtual Status Compute(const std::vector<std::shared_ptr<Tensor>> &input,
std::vector<std::shared_ptr<Tensor>> *output);
virtual Status Compute(const TensorRow &input, TensorRow *output);
// Returns true oif the TensorOp takes one input and returns one output.
// @return true/false

View File

@ -55,8 +55,7 @@ class ThreeToOneOp : public TensorOp {
uint32_t NumInput() override { return 3; }
// Compute function that holds the actual implementation of the operation.
Status Compute(const std::vector<std::shared_ptr<Tensor>> &input,
std::vector<std::shared_ptr<Tensor>> *output) override {
Status Compute(const TensorRow &input, TensorRow *output) override {
output->push_back(input[0]);
return Status::OK();
};
@ -74,8 +73,7 @@ class OneToThreeOp : public TensorOp {
// Compute function that holds the actual implementation of the operation.
// Simply pushing the same shared pointer of the first element of input vector three times.
Status Compute(const std::vector<std::shared_ptr<Tensor>> &input,
std::vector<std::shared_ptr<Tensor>> *output) override {
Status Compute(const TensorRow &input, TensorRow *output) override {
output->push_back(input[0]);
output->push_back(input[0]);
output->push_back(input[0]);