!3708 googlenet-gpu_support_master

Merge pull request !3708 from panfengfeng/googlenet-gpu_support_master
This commit is contained in:
mindspore-ci-bot 2020-07-30 17:11:10 +08:00 committed by Gitee
commit 699e616b3a
4 changed files with 135 additions and 17 deletions

View File

@ -16,6 +16,8 @@
##############test googlenet example on cifar10#################
python eval.py
"""
import argparse
import mindspore.nn as nn
from mindspore import context
from mindspore.nn.optim.momentum import Momentum
@ -26,10 +28,15 @@ from src.config import cifar_cfg as cfg
from src.dataset import create_dataset
from src.googlenet import GoogleNet
parser = argparse.ArgumentParser(description='googlenet')
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
args_opt = parser.parse_args()
if __name__ == '__main__':
device_target = cfg.device_target
context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
context.set_context(device_id=cfg.device_id)
if device_target == "Ascend":
context.set_context(device_id=cfg.device_id)
net = GoogleNet(num_classes=cfg.num_classes)
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
@ -37,7 +44,11 @@ if __name__ == '__main__':
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
param_dict = load_checkpoint(cfg.checkpoint_path)
if device_target == "Ascend":
param_dict = load_checkpoint(cfg.checkpoint_path)
else: # GPU
param_dict = load_checkpoint(args_opt.checkpoint_path)
load_param_into_net(net, param_dict)
net.set_train(False)
dataset = create_dataset(cfg.data_path, 1, False)

View File

@ -0,0 +1,43 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
ulimit -u unlimited
if [ $# != 1 ]
then
echo "GPU: sh run_eval_gpu.sh [CHECKPOINT_PATH]"
exit 1
fi
# check checkpoint file
if [ ! -f $1 ]
then
echo "error: CHECKPOINT_PATH=$1 is not a file"
exit 1
fi
BASEPATH=$(cd "`dirname $0`" || exit; pwd)
export PYTHONPATH=${BASEPATH}:$PYTHONPATH
export DEVICE_ID=0
if [ -d "../eval" ];
then
rm -rf ../eval
fi
mkdir ../eval
cd ../eval || exit
python3 ${BASEPATH}/../eval.py --checkpoint_path=$1 > ./eval.log 2>&1 &

View File

@ -0,0 +1,45 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# -lt 2 ]
then
echo "Usage:\n \
sh run_train.sh [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)]\n \
"
exit 1
fi
if [ $1 -lt 1 ] && [ $1 -gt 8 ]
then
echo "error: DEVICE_NUM=$1 is not in (1-8)"
exit 1
fi
export DEVICE_NUM=$1
export RANK_SIZE=$1
BASEPATH=$(cd "`dirname $0`" || exit; pwd)
export PYTHONPATH=${BASEPATH}:$PYTHONPATH
if [ -d "../train" ];
then
rm -rf ../train
fi
mkdir ../train
cd ../train || exit
export CUDA_VISIBLE_DEVICES="$2"
mpirun -n $1 --allow-run-as-root \
python3 ${BASEPATH}/../train.py > train.log 2>&1 &

View File

@ -25,7 +25,7 @@ import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.communication.management import init
from mindspore.communication.management import init, get_rank
from mindspore.nn.optim.momentum import Momentum
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.model import Model, ParallelMode
@ -38,7 +38,6 @@ from src.googlenet import GoogleNet
random.seed(1)
np.random.seed(1)
def lr_steps(global_step, lr_max=None, total_epochs=None, steps_per_epoch=None):
"""Set learning rate."""
lr_each_step = []
@ -65,18 +64,31 @@ if __name__ == '__main__':
parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
if args_opt.device_id is not None:
context.set_context(device_id=args_opt.device_id)
else:
context.set_context(device_id=cfg.device_id)
device_target = cfg.device_target
context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target)
device_num = int(os.environ.get("DEVICE_NUM", 1))
if device_num > 1:
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)
init()
if device_target == "Ascend":
if args_opt.device_id is not None:
context.set_context(device_id=args_opt.device_id)
else:
context.set_context(device_id=cfg.device_id)
if device_num > 1:
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)
init()
elif device_target == "GPU":
init("nccl")
if device_num > 1:
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
mirror_mean=True)
else:
raise ValueError("Unsupport platform.")
dataset = create_dataset(cfg.data_path, 1)
batch_num = dataset.get_dataset_size()
@ -90,12 +102,19 @@ if __name__ == '__main__':
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum,
weight_decay=cfg.weight_decay)
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None)
if device_target == "Ascend":
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None)
ckpt_save_dir = "./"
else: # GPU
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
amp_level="O2", keep_batchnorm_fp32=True, loss_scale_manager=None)
ckpt_save_dir = "./ckpt_" + str(get_rank()) + "/"
config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=cfg.keep_checkpoint_max)
time_cb = TimeMonitor(data_size=batch_num)
ckpoint_cb = ModelCheckpoint(prefix="train_googlenet_cifar10", directory="./", config=config_ck)
ckpoint_cb = ModelCheckpoint(prefix="train_googlenet_cifar10", directory=ckpt_save_dir, config=config_ck)
loss_cb = LossMonitor()
model.train(cfg.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb])
print("train success")