!25675 Fix the random failure of ut tests in ci

Merge pull request !25675 from YuJianfeng/clean
This commit is contained in:
i-robot 2021-10-30 06:49:28 +00:00 committed by Gitee
commit 682be52561
1 changed files with 0 additions and 65 deletions

View File

@ -1,65 +0,0 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""DFX test for bprop mindir"""
import os
import numpy as np
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.ops as ops
import mindspore.ops._grad as g
class Net(nn.Cell):
def __init__(self, op):
super(Net, self).__init__()
self.op = op
def construct(self, *inputs):
return self.op(*inputs)
class GradNet(nn.Cell):
def __init__(self, network):
super(GradNet, self).__init__()
self.grad = ops.GradOperation(get_all=True)
self.network = network
def construct(self, *inputs):
gout = self.grad(self.network)(*inputs)
return gout
def test_remove_bprop_fle():
"""
Feature: Bprop pre-compilation.
Description: Remove a bprop file, compile a grad net with a bprop not defined in this file.
Expectation: The grad net can be complied successfully.
"""
bprop_path = g.__file__
bprop_installed_dir = bprop_path[: bprop_path.rindex('/')]
nn_bprop_path = bprop_installed_dir + '/grad_nn_ops.py'
new_path = bprop_installed_dir + '/new'
os.mkdir(new_path)
new_nn_bprop_path = bprop_installed_dir + '/new/grad_nn_ops.py'
os.rename(nn_bprop_path, new_nn_bprop_path)
x = Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))
ones_like = Net(P.OnesLike())
grad = GradNet(ones_like)
grad.compile(x)
os.rename(new_nn_bprop_path, nn_bprop_path)
os.rmdir(new_path)