forked from mindspore-Ecosystem/mindspore
commit
66328d052d
|
@ -66,18 +66,15 @@ ResNet系列模型是在2015年提出的,该网络创新性的提出了残差
|
|||
```Shell
|
||||
# 分布式训练
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_distribute_train.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH]
|
||||
bash scripts/run_distribute_train.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH]
|
||||
|
||||
# 单机训练
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_standalone_train.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH]
|
||||
bash scripts/run_standalone_train.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH]
|
||||
|
||||
# 运行评估示例
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_eval.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
bash scripts/run_eval.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
- GPU处理器环境运行
|
||||
|
@ -85,18 +82,15 @@ sh run_eval.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [D
|
|||
```shell
|
||||
# 分布式训练
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_distribute_train_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH]
|
||||
bash scripts/run_distribute_train_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH]
|
||||
|
||||
# 单机训练
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_standalone_train_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH]
|
||||
bash scripts/run_standalone_train_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH]
|
||||
|
||||
# 运行评估示例
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_eval_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
bash scripts/run_eval_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
# 脚本说明
|
||||
|
@ -181,13 +175,11 @@ sh run_eval_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012
|
|||
```Shell
|
||||
# 分布式训练
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_distribute_train.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH]
|
||||
bash scripts/run_distribute_train.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH]
|
||||
|
||||
# 单机训练
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_standalone_train.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH]
|
||||
bash scripts/run_standalone_train.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH]
|
||||
```
|
||||
|
||||
分布式训练需要提前创建JSON格式的HCCL配置文件。
|
||||
|
@ -199,13 +191,11 @@ sh run_standalone_train.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imag
|
|||
```shell
|
||||
# 分布式训练
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_distribute_train_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH]
|
||||
bash scripts/run_distribute_train_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH]
|
||||
|
||||
# 单机训练
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_standalone_train_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH]
|
||||
bash scripts/run_standalone_train_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH]
|
||||
```
|
||||
|
||||
## 结果
|
||||
|
@ -245,8 +235,7 @@ epoch time: 813347.102 ms, per step time: 325.075 ms
|
|||
```Shell
|
||||
# 评估
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_eval.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
bash scripts/run_eval.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
### GPU处理器环境运行
|
||||
|
@ -254,8 +243,7 @@ sh run_eval.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [D
|
|||
```shell
|
||||
# 运行评估示例
|
||||
用法:
|
||||
cd ./scripts
|
||||
sh run_eval_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
bash scripts/run_eval_gpu.sh [resnetv2_50|resnetv2_101|resnetv2_152] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
## 结果
|
||||
|
@ -291,8 +279,7 @@ python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [
|
|||
|
||||
```shell
|
||||
# Ascend310 inference
|
||||
cd ./scripts
|
||||
bash run_infer_310.sh [MINDIR_PATH] [DATASET] [DATA_PATH] [DEVICE_ID]
|
||||
bash scripts/run_infer_310.sh [MINDIR_PATH] [DATASET] [DATA_PATH] [DEVICE_ID]
|
||||
```
|
||||
|
||||
- `DATASET` 为数据集类型,如cifar10, cifar100等。
|
||||
|
|
Loading…
Reference in New Issue