forked from mindspore-Ecosystem/mindspore
!3947 add conv2d transpose test case
Merge pull request !3947 from chenzupeng/master-lite
This commit is contained in:
commit
645f11fa59
|
@ -54,6 +54,7 @@ endif ()
|
|||
if (SUPPORT_GPU)
|
||||
add_definitions(-DUSE_OPENCL_WRAPPER)
|
||||
add_definitions(-DMS_OPENCL_PROFILE=false)
|
||||
add_definitions(-DCL_HPP_TARGET_OPENCL_VERSION=200)
|
||||
add_compile_definitions(SUPPORT_GPU)
|
||||
if(OFFLINE_COMPILE)
|
||||
add_compile_definitions(PROGRAM_WITH_IL)
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
#define FLT half
|
||||
#define FLT4 half4
|
||||
#define FLT16 half16
|
||||
#define READ_IMAGE read_imageh
|
||||
#define WRITE_IMAGE write_imageh
|
||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||
__kernel void conv2d_transpose2x2(__read_only image2d_t src_data, __global FLT16 *weight, __read_only image2d_t biases,
|
||||
__write_only image2d_t dst_data, int2 kernel_size, int2 stride, int2 padding,
|
||||
|
@ -14,17 +16,17 @@ __kernel void conv2d_transpose2x2(__read_only image2d_t src_data, __global FLT16
|
|||
int src_w = w / 2;
|
||||
src_w = src_w * 2;
|
||||
int co = get_global_id(2);
|
||||
if (h * 2 >= dst_size.x || w * 2 >= dst_size.y || co >= dst_size.z) return;
|
||||
if (src_h * 2 >= dst_size.x || src_w * 2 >= dst_size.y || co >= dst_size.z) return;
|
||||
FLT4 r0 = (FLT4)(0.f);
|
||||
FLT4 r1 = (FLT4)(0.f);
|
||||
FLT4 r2 = (FLT4)(0.f);
|
||||
FLT4 r3 = (FLT4)(0.f);
|
||||
int base_w = (co * 4 + kh + kw * 2) * src_size.z;
|
||||
for (int ci = 0; ci < src_size.z; ++ci) {
|
||||
FLT4 x0 = read_imagef(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h));
|
||||
FLT4 x1 = read_imagef(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h + 1));
|
||||
FLT4 x2 = read_imagef(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h));
|
||||
FLT4 x3 = read_imagef(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h + 1));
|
||||
FLT4 x0 = READ_IMAGE(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h));
|
||||
FLT4 x1 = READ_IMAGE(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h + 1));
|
||||
FLT4 x2 = READ_IMAGE(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h));
|
||||
FLT4 x3 = READ_IMAGE(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h + 1));
|
||||
FLT16 weight_cache = weight[base_w++];
|
||||
r0 += x0.x * weight_cache.s0123;
|
||||
r0 += x0.y * weight_cache.s4567;
|
||||
|
@ -46,14 +48,14 @@ __kernel void conv2d_transpose2x2(__read_only image2d_t src_data, __global FLT16
|
|||
r3 += x3.z * weight_cache.s89ab;
|
||||
r3 += x3.w * weight_cache.scdef;
|
||||
}
|
||||
FLT4 bias_val = read_imagef(biases, smp_zero, (int2)(co, 0));
|
||||
FLT4 bias_val = READ_IMAGE(biases, smp_zero, (int2)(co, 0));
|
||||
r0 += bias_val;
|
||||
r1 += bias_val;
|
||||
r2 += bias_val;
|
||||
r3 += bias_val;
|
||||
|
||||
write_imagef(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh), r0);
|
||||
write_imagef(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh + 2), r1);
|
||||
write_imagef(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh), r2);
|
||||
write_imagef(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh + 2), r3);
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh), r0);
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh + 2), r1);
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh), r2);
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh + 2), r3);
|
||||
}
|
||||
|
|
|
@ -1,31 +1,32 @@
|
|||
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||
#define FLT4 half4
|
||||
#define FLT16 half16
|
||||
__kernel void MatMul(__global FLT4 *x, __global FLT16 *weight, __global FLT4 *buffer, __global FLT4 *bias,
|
||||
int2 offset_ci, int2 offset_co, int has_bias) {
|
||||
#define READ_IMAGE read_imageh
|
||||
#define WRITE_IMAGE write_imageh
|
||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||
__kernel void MatMul(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
|
||||
__write_only image2d_t output, int2 offset_ci, int2 offset_co, int has_bias) {
|
||||
int2 gid = (int2)(get_global_id(0), get_global_id(1));
|
||||
int2 lid = (int2)(get_local_id(0), get_local_id(1));
|
||||
FLT4 s = (FLT4)(0.0f);
|
||||
FLT4 result = (FLT4)(0.0f);
|
||||
bool inside = gid.x < offset_co.y;
|
||||
for (uint i = lid.y; i < offset_ci.y && inside; i += 4) {
|
||||
FLT4 v = x[i];
|
||||
FLT4 v = READ_IMAGE(input, smp_zero, (int2)(i, 0));
|
||||
FLT16 w = weight[gid.x + i * offset_co.y];
|
||||
s.x += dot(v, w.s0123);
|
||||
s.y += dot(v, w.s4567);
|
||||
s.z += dot(v, w.s89ab);
|
||||
s.w += dot(v, w.scdef);
|
||||
result.x += dot(v, w.s0123);
|
||||
result.y += dot(v, w.s4567);
|
||||
result.z += dot(v, w.s89ab);
|
||||
result.w += dot(v, w.scdef);
|
||||
}
|
||||
__local FLT4 temp[64][4];
|
||||
temp[lid.x][lid.y] = s;
|
||||
temp[lid.x][lid.y] = result;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (lid.y == 0 && inside) {
|
||||
s += temp[lid.x][1];
|
||||
s += temp[lid.x][2];
|
||||
s += temp[lid.x][3];
|
||||
result += temp[lid.x][1];
|
||||
result += temp[lid.x][2];
|
||||
result += temp[lid.x][3];
|
||||
if (has_bias != 0) {
|
||||
s += bias[gid.x];
|
||||
result += READ_IMAGE(bias, smp_zero, (int2)(gid.x, 0));
|
||||
}
|
||||
buffer[gid.x] = s;
|
||||
// memory pollution? or protected by opencl
|
||||
WRITE_IMAGE(output, (int2)(gid.x, 0), result);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1,6 +1,8 @@
|
|||
#define FLT float
|
||||
#define FLT4 float4
|
||||
#define FLT16 float16
|
||||
#define READ_IMAGE read_imagef
|
||||
#define WRITE_IMAGE write_imagef
|
||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||
__kernel void conv2d_transpose2x2(__read_only image2d_t src_data, __global FLT16 *weight, __read_only image2d_t biases,
|
||||
__write_only image2d_t dst_data, int2 kernel_size, int2 stride, int2 padding,
|
||||
|
@ -14,17 +16,17 @@ __kernel void conv2d_transpose2x2(__read_only image2d_t src_data, __global FLT16
|
|||
int src_w = w / 2;
|
||||
src_w = src_w * 2;
|
||||
int co = get_global_id(2);
|
||||
if (h * 2 >= dst_size.x || w * 2 >= dst_size.y || co >= dst_size.z) return;
|
||||
if (src_h * 2 >= dst_size.x || src_w * 2 >= dst_size.y || co >= dst_size.z) return;
|
||||
FLT4 r0 = (FLT4)(0.f);
|
||||
FLT4 r1 = (FLT4)(0.f);
|
||||
FLT4 r2 = (FLT4)(0.f);
|
||||
FLT4 r3 = (FLT4)(0.f);
|
||||
int base_w = (co * 4 + kh + kw * 2) * src_size.z;
|
||||
for (int ci = 0; ci < src_size.z; ++ci) {
|
||||
FLT4 x0 = read_imagef(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h));
|
||||
FLT4 x1 = read_imagef(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h + 1));
|
||||
FLT4 x2 = read_imagef(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h));
|
||||
FLT4 x3 = read_imagef(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h + 1));
|
||||
FLT4 x0 = READ_IMAGE(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h));
|
||||
FLT4 x1 = READ_IMAGE(src_data, smp_zero, (int2)(src_w * src_size.z + ci, src_h + 1));
|
||||
FLT4 x2 = READ_IMAGE(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h));
|
||||
FLT4 x3 = READ_IMAGE(src_data, smp_zero, (int2)((src_w + 1) * src_size.z + ci, src_h + 1));
|
||||
FLT16 weight_cache = weight[base_w++];
|
||||
r0 += x0.x * weight_cache.s0123;
|
||||
r0 += x0.y * weight_cache.s4567;
|
||||
|
@ -46,14 +48,14 @@ __kernel void conv2d_transpose2x2(__read_only image2d_t src_data, __global FLT16
|
|||
r3 += x3.z * weight_cache.s89ab;
|
||||
r3 += x3.w * weight_cache.scdef;
|
||||
}
|
||||
FLT4 bias_val = read_imagef(biases, smp_zero, (int2)(co, 0));
|
||||
FLT4 bias_val = READ_IMAGE(biases, smp_zero, (int2)(co, 0));
|
||||
r0 += bias_val;
|
||||
r1 += bias_val;
|
||||
r2 += bias_val;
|
||||
r3 += bias_val;
|
||||
|
||||
write_imagef(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh), r0);
|
||||
write_imagef(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh + 2), r1);
|
||||
write_imagef(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh), r2);
|
||||
write_imagef(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh + 2), r3);
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh), r0);
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw) * dst_size.z + co, 2 * src_h + kh + 2), r1);
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh), r2);
|
||||
WRITE_IMAGE(dst_data, (int2)((2 * src_w + kw + 2) * dst_size.z + co, 2 * src_h + kh + 2), r3);
|
||||
}
|
||||
|
|
|
@ -1,30 +1,32 @@
|
|||
#define FLT4 float4
|
||||
#define FLT16 float16
|
||||
__kernel void MatMul(__global FLT4 *x, __global FLT16 *weight, __global FLT4 *buffer, __global FLT4 *bias,
|
||||
int2 offset_ci, int2 offset_co, int has_bias) {
|
||||
#define READ_IMAGE read_imagef
|
||||
#define WRITE_IMAGE write_imagef
|
||||
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||
__kernel void MatMul(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
|
||||
__write_only image2d_t output, int2 offset_ci, int2 offset_co, int has_bias) {
|
||||
int2 gid = (int2)(get_global_id(0), get_global_id(1));
|
||||
int2 lid = (int2)(get_local_id(0), get_local_id(1));
|
||||
FLT4 s = (FLT4)(0.0f);
|
||||
FLT4 result = (FLT4)(0.0f);
|
||||
bool inside = gid.x < offset_co.y;
|
||||
for (uint i = lid.y; i < offset_ci.y && inside; i += 4) {
|
||||
FLT4 v = x[i];
|
||||
FLT4 v = READ_IMAGE(input, smp_zero, (int2)(i, 0));
|
||||
FLT16 w = weight[gid.x + i * offset_co.y];
|
||||
s.x += dot(v, w.s0123);
|
||||
s.y += dot(v, w.s4567);
|
||||
s.z += dot(v, w.s89ab);
|
||||
s.w += dot(v, w.scdef);
|
||||
result.x += dot(v, w.s0123);
|
||||
result.y += dot(v, w.s4567);
|
||||
result.z += dot(v, w.s89ab);
|
||||
result.w += dot(v, w.scdef);
|
||||
}
|
||||
__local FLT4 temp[64][4];
|
||||
temp[lid.x][lid.y] = s;
|
||||
temp[lid.x][lid.y] = result;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if (lid.y == 0 && inside) {
|
||||
s += temp[lid.x][1];
|
||||
s += temp[lid.x][2];
|
||||
s += temp[lid.x][3];
|
||||
result += temp[lid.x][1];
|
||||
result += temp[lid.x][2];
|
||||
result += temp[lid.x][3];
|
||||
if (has_bias != 0) {
|
||||
s += bias[gid.x];
|
||||
result += READ_IMAGE(bias, smp_zero, (int2)(gid.x, 0));
|
||||
}
|
||||
buffer[gid.x] = s;
|
||||
// memory pollution? or protected by opencl
|
||||
WRITE_IMAGE(output, (int2)(gid.x, 0), result);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -144,8 +144,8 @@ int Conv2dTransposeOpenCLKernel::Run() {
|
|||
&out_error_code);
|
||||
// local size should less than MAX_GROUP_SIZE
|
||||
std::vector<size_t> local = {16, 1, 16};
|
||||
std::vector<size_t> global = {UP_ROUND((size_t)oh / 2, local[0]), UP_ROUND((size_t)ow / 2, local[1]),
|
||||
UP_ROUND((size_t)co / 4, local[2])};
|
||||
std::vector<size_t> global = {UP_ROUND((size_t)UP_ROUND(oh / 2, 2), local[0]),
|
||||
UP_ROUND((size_t)UP_ROUND(ow / 2, 2), local[1]), UP_ROUND((size_t)co / 4, local[2])};
|
||||
|
||||
cl_int2 kernel_size = {kh, kw};
|
||||
cl_int2 stride = {2, 2};
|
||||
|
|
|
@ -50,22 +50,24 @@ int MatMulOpenCLKernel::Init() {
|
|||
ocl_runtime->LoadSource(program_name, source);
|
||||
ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||
#endif
|
||||
int ci = inputs_[1]->shape()[1];
|
||||
auto weight_format = inputs_[1]->GetFormat();
|
||||
if (weight_format != schema::Format_NHWC) {
|
||||
MS_LOG(ERROR) << "weight format(" << weight_format << ") "
|
||||
<< "format not support!";
|
||||
return 1;
|
||||
}
|
||||
int ci = inputs_[1]->shape()[3];
|
||||
int co = inputs_[1]->shape()[0];
|
||||
sizeCI = {ci, UP_DIV(ci, 4)};
|
||||
sizeCO = {co, UP_DIV(co, 4)};
|
||||
auto allocator = ocl_runtime->GetAllocator();
|
||||
padWeight_ = reinterpret_cast<FLOAT_T *>(allocator->Malloc(sizeCI.s[1] * sizeCO.s[1] * 16 * sizeof(FLOAT_T)));
|
||||
padWeight_ = reinterpret_cast<FLOAT_T *>(allocator->MapBuffer(padWeight_, CL_MAP_WRITE, nullptr, true));
|
||||
if (hasBias_) {
|
||||
bias_ = reinterpret_cast<FLOAT_T *>(allocator->Malloc(sizeCO.s[1] * 4 * sizeof(FLOAT_T)));
|
||||
bias_ = reinterpret_cast<FLOAT_T *>(allocator->MapBuffer(bias_, CL_MAP_WRITE, nullptr, true));
|
||||
}
|
||||
bias_ = reinterpret_cast<FLOAT_T *>(allocator->Malloc(sizeCO.s[1] * 4 * sizeof(FLOAT_T)));
|
||||
bias_ = reinterpret_cast<FLOAT_T *>(allocator->MapBuffer(bias_, CL_MAP_WRITE, nullptr, true));
|
||||
PadWeight();
|
||||
allocator->UnmapBuffer(padWeight_);
|
||||
if (hasBias_) {
|
||||
allocator->UnmapBuffer(bias_);
|
||||
}
|
||||
allocator->UnmapBuffer(bias_);
|
||||
outputs_[0]->SetFormat(schema::Format_NHWC4);
|
||||
MS_LOG(DEBUG) << kernel_name << " Init Done!";
|
||||
return 0;
|
||||
|
@ -98,6 +100,10 @@ void MatMulOpenCLKernel::PadWeight() {
|
|||
for (int i = sizeCO.s[0]; i < sizeCO.s[1] * 4; i++) {
|
||||
bias_[i] = 0;
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < sizeCO.s[1] * 4; i++) {
|
||||
bias_[i] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -114,18 +120,34 @@ int MatMulOpenCLKernel::Run() {
|
|||
std::vector<size_t> local = {64, 4};
|
||||
std::vector<size_t> global = {UP_ROUND(sizeCO.s[1], local[0]), 4};
|
||||
|
||||
ocl_runtime->SetKernelArg(kernel_, 0, inputs_[0]->Data());
|
||||
ocl_runtime->SetKernelArg(kernel_, 1, padWeight_);
|
||||
ocl_runtime->SetKernelArg(kernel_, 2, outputs_[0]->Data());
|
||||
if (hasBias_) {
|
||||
ocl_runtime->SetKernelArg(kernel_, 3, bias_);
|
||||
} else {
|
||||
ocl_runtime->SetKernelArg(kernel_, 3, nullptr);
|
||||
cl::ImageFormat image_format;
|
||||
{
|
||||
image_format.image_channel_order = CL_RGBA;
|
||||
#ifdef ENABLE_FP16
|
||||
image_format.image_channel_data_type = CL_HALF_FLOAT;
|
||||
#else
|
||||
image_format.image_channel_data_type = CL_FLOAT;
|
||||
#endif
|
||||
}
|
||||
cl_int in_error_code, in_error_code_weight, in_error_code_bias, out_error_code;
|
||||
cl::Image2D img_input(*ocl_runtime->Context(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, image_format, sizeCI.s[1], 1,
|
||||
0, inputs_[0]->Data(), &in_error_code);
|
||||
cl::Image2D img_bias(*ocl_runtime->Context(), CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, image_format, sizeCO.s[1], 1,
|
||||
0, bias_, &in_error_code_bias);
|
||||
cl::Image2D img_out(*ocl_runtime->Context(), CL_MEM_WRITE_ONLY, image_format, sizeCO.s[1], 1, 0, nullptr,
|
||||
&out_error_code);
|
||||
|
||||
ocl_runtime->SetKernelArg(kernel_, 0, img_input);
|
||||
ocl_runtime->SetKernelArg(kernel_, 1, padWeight_);
|
||||
ocl_runtime->SetKernelArg(kernel_, 2, img_bias);
|
||||
ocl_runtime->SetKernelArg(kernel_, 3, img_out);
|
||||
ocl_runtime->SetKernelArg(kernel_, 4, sizeCI);
|
||||
ocl_runtime->SetKernelArg(kernel_, 5, sizeCO);
|
||||
ocl_runtime->SetKernelArg(kernel_, 6, hasBias_ ? 1 : 0);
|
||||
ocl_runtime->RunKernel(kernel_, global, local, nullptr);
|
||||
auto origin = cl::array<cl::size_type, 3U>{0, 0, 0};
|
||||
auto region = cl::array<cl::size_type, 3U>{(size_t)(sizeCO.s[1]), 1, 1};
|
||||
ocl_runtime->GetDefaultCommandQueue()->enqueueReadImage(img_out, CL_TRUE, origin, region, 0, 0, outputs_[0]->Data());
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -151,4 +173,3 @@ kernel::LiteKernel *OpenCLMatMulKernelCreator(const std::vector<lite::tensor::Te
|
|||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_MatMul, OpenCLMatMulKernelCreator)
|
||||
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_FullConnection, OpenCLMatMulKernelCreator)
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -294,6 +294,7 @@ if (SUPPORT_GPU)
|
|||
${TEST_DIR}/ut/src/runtime/kernel/opencl/avg_pooling_tests.cc
|
||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/max_pooling_tests.cc
|
||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/utils_tests.cc
|
||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/conv2d_transpose_tests.cc
|
||||
)
|
||||
endif()
|
||||
|
||||
|
|
|
@ -0,0 +1,110 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <iostream>
|
||||
#include <memory>
|
||||
|
||||
#include "common/common_test.h"
|
||||
#include "mindspore/lite/src/common/file_utils.h"
|
||||
#include "mindspore/lite/src/runtime/opencl/opencl_runtime.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
|
||||
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/conv2d_transpose.h"
|
||||
#include "mindspore/core/utils/log_adapter.h"
|
||||
|
||||
namespace mindspore {
|
||||
class TestConv2dTransposeOpenCL : public mindspore::Common {
|
||||
public:
|
||||
TestConv2dTransposeOpenCL() {}
|
||||
};
|
||||
|
||||
TEST_F(TestConv2dTransposeOpenCL, Conv2dTransposeFp32) {
|
||||
// setbuf(stdout, NULL);
|
||||
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||
ocl_runtime->Init();
|
||||
int pad = 0;
|
||||
int n = 1;
|
||||
int h = 240;
|
||||
int w = 240;
|
||||
int kh = 2;
|
||||
int kw = 2;
|
||||
int ci = 128;
|
||||
int co = 128;
|
||||
int oh = 2 * h - 1 + 2 * (kh - 1 - pad) - kh + 1;
|
||||
int ow = 2 * w - 1 + 2 * (kw - 1 - pad) - kw + 1;
|
||||
|
||||
size_t input_size;
|
||||
std::string input_path = "./test_data/conv2d_transpose/conv2d_transpose_fp32_input.bin";
|
||||
auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size));
|
||||
|
||||
size_t weight_size;
|
||||
std::string weight_path = "./test_data/conv2d_transpose/conv2d_transpose_fp32_weight.bin";
|
||||
auto weight_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(weight_path.c_str(), &weight_size));
|
||||
|
||||
size_t bias_size;
|
||||
std::string bias_path = "./test_data/conv2d_transpose/conv2d_transpose_fp32_bias.bin";
|
||||
auto bias_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(bias_path.c_str(), &bias_size));
|
||||
|
||||
lite::tensor::Tensor *tensor_x = new lite::tensor::Tensor(TypeId(kNumberTypeFloat32), {1, h, w, ci});
|
||||
tensor_x->SetData(input_data);
|
||||
|
||||
lite::tensor::Tensor *tensor_w = new lite::tensor::Tensor(TypeId(kNumberTypeFloat32), {co, kh, kw, ci});
|
||||
tensor_w->SetData(weight_data);
|
||||
|
||||
lite::tensor::Tensor *tensor_bias = new lite::tensor::Tensor(TypeId(kNumberTypeFloat32), {co});
|
||||
tensor_bias->SetData(bias_data);
|
||||
|
||||
lite::tensor::Tensor *tensor_out = new lite::tensor::Tensor(TypeId(kNumberTypeFloat32), {1, oh, ow, co});
|
||||
std::vector<lite::tensor::Tensor *> inputs{tensor_x, tensor_w, tensor_bias};
|
||||
std::vector<lite::tensor::Tensor *> outputs{tensor_out};
|
||||
ConvParameter *opParameter = new ConvParameter();
|
||||
opParameter->kernel_h_ = kh;
|
||||
opParameter->kernel_w_ = kw;
|
||||
opParameter->stride_h_ = 2;
|
||||
opParameter->stride_w_ = 2;
|
||||
opParameter->pad_h_ = pad;
|
||||
opParameter->pad_w_ = pad;
|
||||
opParameter->input_channel_ = ci;
|
||||
opParameter->output_channel_ = co;
|
||||
auto *arith_kernel =
|
||||
new kernel::Conv2dTransposeOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs);
|
||||
arith_kernel->Init();
|
||||
|
||||
std::vector<kernel::LiteKernel *> kernels{arith_kernel};
|
||||
auto *pGraph = new kernel::SubGraphOpenCLKernel({tensor_x}, outputs, kernels, kernels, kernels);
|
||||
pGraph->Init();
|
||||
pGraph->Run();
|
||||
|
||||
printf("==================output data=================\n");
|
||||
float *output_data = reinterpret_cast<float *>(tensor_out->Data());
|
||||
std::cout << std::endl;
|
||||
size_t output_size;
|
||||
std::string output_path = "./test_data/conv2d_transpose/conv2d_transpose_fp32_output.bin";
|
||||
auto correct_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(output_path.c_str(), &output_size));
|
||||
int size_n = oh * ow * co;
|
||||
size_n = size_n > 100 ? 100 : size_n;
|
||||
for (int i = 0; i < size_n; i++) {
|
||||
std::cout << output_data[i] << ", ";
|
||||
if ((i + 1) % co == 0) {
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
// compare
|
||||
CompareOutputData(output_data, correct_data, oh * ow * co, 0.00001);
|
||||
|
||||
MS_LOG(INFO) << "Test Conv2dTransposeFp32 passed";
|
||||
}
|
||||
} // namespace mindspore
|
|
@ -41,38 +41,39 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) {
|
|||
std::string weight_path = "./test_data/matmul/matmul_fp32_weight.bin";
|
||||
auto weight_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(weight_path.c_str(), &weight_size));
|
||||
|
||||
lite::tensor::Tensor *tensor_x = new lite::tensor::Tensor(TypeId(kNumberTypeFloat32), {1, ci});
|
||||
lite::tensor::Tensor *tensor_x = new lite::tensor::Tensor(TypeId(kNumberTypeFloat32), {1, 1, 1, ci});
|
||||
tensor_x->SetData(input_data);
|
||||
|
||||
lite::tensor::Tensor *tensor_w = new lite::tensor::Tensor(TypeId(kNumberTypeFloat32), {co, ci});
|
||||
lite::tensor::Tensor *tensor_w = new lite::tensor::Tensor(TypeId(kNumberTypeFloat32), {co, 1, 1, ci});
|
||||
tensor_w->SetData(weight_data);
|
||||
|
||||
lite::tensor::Tensor *tensor_out = new lite::tensor::Tensor(TypeId(kNumberTypeFloat32), {1, co});
|
||||
lite::tensor::Tensor *tensor_out = new lite::tensor::Tensor(TypeId(kNumberTypeFloat32), {1, 1, 1, co});
|
||||
std::vector<lite::tensor::Tensor *> inputs{tensor_x, tensor_w};
|
||||
std::vector<lite::tensor::Tensor *> outputs{tensor_out};
|
||||
auto *arith_kernel = new kernel::MatMulOpenCLKernel(nullptr, inputs, outputs, false);
|
||||
arith_kernel->Init();
|
||||
|
||||
std::vector<kernel::LiteKernel *> kernels{arith_kernel};
|
||||
auto *pGraph = new kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
|
||||
auto *pGraph = new kernel::SubGraphOpenCLKernel({tensor_x}, outputs, kernels, kernels, kernels);
|
||||
pGraph->Init();
|
||||
|
||||
memcpy(inputs[0]->Data(), input_data, sizeof(float) * ci);
|
||||
pGraph->Run();
|
||||
|
||||
printf("==================output data=================\n");
|
||||
float *output_data = reinterpret_cast<float *>(tensor_out->Data());
|
||||
std::cout << std::endl;
|
||||
for (int i = 0; i < co; i++) {
|
||||
std::cout << output_data[i] << ", ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
size_t output_size;
|
||||
std::string output_path = "./test_data/matmul/matmul_fp32_output.bin";
|
||||
auto correct_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(output_path.c_str(), &output_size));
|
||||
printf("==================output data=================\n");
|
||||
float *output_data = reinterpret_cast<float *>(tensor_out->Data());
|
||||
std::cout << std::endl;
|
||||
int size_n = co;
|
||||
size_n = size_n > 100 ? 100 : size_n;
|
||||
for (int i = 0; i < size_n; i++) {
|
||||
std::cout << output_data[i] << " ";
|
||||
}
|
||||
std::cout << std::endl;
|
||||
|
||||
|
||||
// compare
|
||||
CompareOutputData(output_data, correct_data, co * sizeof(float), 0.00001);
|
||||
CompareOutputData(output_data, correct_data, co, 0.00001);
|
||||
|
||||
delete input_data;
|
||||
delete weight_data;
|
||||
|
|
Loading…
Reference in New Issue