expand dims & flatten & squeeze & unsqueeze

This commit is contained in:
ling 2021-01-28 17:21:36 +08:00
parent 4b3e53b4d2
commit 5c744c0918
12 changed files with 18 additions and 521 deletions

View File

@ -1,36 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_EXPAND_DIMS_BASE_H_
#define MINDSPORE_LITE_NNACL_EXPAND_DIMS_BASE_H_
#include "nnacl/op_base.h"
#include "nnacl/errorcode.h"
#ifdef __cplusplus
extern "C" {
#endif
inline int ExpandDims(const void *input_ptr, void *output_ptr, size_t data_size) {
memcpy(output_ptr, input_ptr, data_size);
return NNACL_OK;
}
#ifdef __cplusplus
}
#endif
#endif // MINDSPORE_LITE_NNACL_EXPAND_DIMS_BASE_H_

View File

@ -1,34 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_BASE_UNSQUEEZE_BASE_H_
#define MINDSPORE_LITE_NNACL_BASE_UNSQUEEZE_BASE_H_
#include "nnacl/op_base.h"
#include "nnacl/errorcode.h"
#ifdef __cplusplus
extern "C" {
#endif
int Unsqueeze(const int8_t *input_ptr, int8_t *output_ptr, size_t data_size) {
memcpy(output_ptr, input_ptr, data_size);
return NNACL_OK;
}
#ifdef __cplusplus
}
#endif
#endif // MINDSPORE_LITE_NNACL_BASE_UNSQUEEZE_BASE_H_

View File

@ -1,15 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

View File

@ -22,7 +22,11 @@ using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_ExpandDims;
using mindspore::schema::PrimitiveType_Flatten;
using mindspore::schema::PrimitiveType_Reshape;
using mindspore::schema::PrimitiveType_Squeeze;
using mindspore::schema::PrimitiveType_Unsqueeze;
namespace mindspore::kernel {
int ReshapeBaseCPUKernel::Init() { return ReSize(); }
@ -68,4 +72,18 @@ int ReshapeBaseCPUKernel::Run() {
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Reshape, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Reshape, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Reshape, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Flatten, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Flatten, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_ExpandDims, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_ExpandDims, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ExpandDims, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_ExpandDims, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Squeeze, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Squeeze, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Squeeze, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeBool, PrimitiveType_Squeeze, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Unsqueeze, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Unsqueeze, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Unsqueeze, LiteKernelCreator<ReshapeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeInt64, PrimitiveType_Unsqueeze, LiteKernelCreator<ReshapeBaseCPUKernel>)
} // namespace mindspore::kernel

View File

@ -1,27 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/base/squeeze_base.h"
#include "src/kernel_registry.h"
#include "schema/model_generated.h"
using mindspore::lite::KernelRegistrar;
using mindspore::schema::PrimitiveType_Squeeze;
namespace mindspore::kernel {
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Squeeze, LiteKernelCreator<SqueezeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat16, PrimitiveType_Squeeze, LiteKernelCreator<SqueezeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Squeeze, LiteKernelCreator<SqueezeBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeBool, PrimitiveType_Squeeze, LiteKernelCreator<SqueezeBaseCPUKernel>)
} // namespace mindspore::kernel

View File

@ -1,34 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SQUEEZE_BASE_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SQUEEZE_BASE_H_
#include <vector>
#include "src/runtime/kernel/arm/base/reshape_base.h"
using mindspore::lite::InnerContext;
namespace mindspore::kernel {
class SqueezeBaseCPUKernel : public ReshapeBaseCPUKernel {
public:
SqueezeBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
: ReshapeBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~SqueezeBaseCPUKernel() override = default;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_SQUEEZE_BASE_H_

View File

@ -1,98 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp32/expandDims_fp32.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/runtime_api.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_ExpandDims;
namespace mindspore::kernel {
int ExpandDimsCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int ExpandDimsCPUKernel::ReSize() {
data_size_ = in_tensors_.at(0)->ElementsNum();
thread_sz_count_ = MSMIN(thread_count_, static_cast<int>(data_size_));
thread_sz_stride_ = UP_DIV(data_size_, thread_sz_count_);
return RET_OK;
}
int ExpandDimsCPUKernel::DoExpandDims(int task_id) {
size_t size = MSMIN(thread_sz_stride_, static_cast<int>(data_size_ - task_id * thread_sz_stride_));
if (size == 0) {
return RET_OK;
}
int offset = task_id * thread_sz_stride_;
if (this->in_tensors_.at(0)->data_type() == kNumberTypeFloat32) {
int ret = ExpandDims(reinterpret_cast<float *>(in_ptr_) + offset, reinterpret_cast<float *>(out_ptr_) + offset,
size * sizeof(float));
if (ret != RET_OK) {
MS_LOG(ERROR) << "ExpandDimsRun error task_id[" << task_id << "] error_code[" << ret << "]";
return ret;
}
} else if (this->in_tensors_.at(0)->data_type() == kNumberTypeInt8) {
int ret = ExpandDims(reinterpret_cast<int8_t *>(in_ptr_) + offset, reinterpret_cast<int8_t *>(out_ptr_) + offset,
size * sizeof(int8_t));
if (ret != RET_OK) {
MS_LOG(ERROR) << "ExpandDimsRun error task_id[" << task_id << "] error_code[" << ret << "]";
return ret;
}
} else if (this->in_tensors_.at(0)->data_type() == kNumberTypeInt32) {
int ret = ExpandDims(reinterpret_cast<int32_t *>(in_ptr_) + offset, reinterpret_cast<int32_t *>(out_ptr_) + offset,
size * sizeof(int32_t));
if (ret != RET_OK) {
MS_LOG(ERROR) << "ExpandDimsRun error task_id[" << task_id << "] error_code[" << ret << "]";
return ret;
}
}
return RET_OK;
}
int ExpandDimsRun(void *cdata, int task_id) {
auto g_kernel = reinterpret_cast<ExpandDimsCPUKernel *>(cdata);
auto ret = g_kernel->DoExpandDims(task_id);
if (ret != RET_OK) {
MS_LOG(ERROR) << "ExpandDimsRun error task_id[" << task_id << "] error_code[" << ret << "]";
return ret;
}
return RET_OK;
}
int ExpandDimsCPUKernel::Run() {
in_ptr_ = in_tensors_.at(0)->data_c();
out_ptr_ = out_tensors_.at(0)->data_c();
auto ret = ParallelLaunch(this->context_->thread_pool_, ExpandDimsRun, this, thread_sz_count_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "ExpandDimsRun error error_code[" << ret << "]";
return ret;
}
return RET_OK;
}
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_ExpandDims, LiteKernelCreator<ExpandDimsCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_ExpandDims, LiteKernelCreator<ExpandDimsCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeInt8, PrimitiveType_ExpandDims, LiteKernelCreator<ExpandDimsCPUKernel>)
} // namespace mindspore::kernel

View File

@ -1,54 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_EXPANDDIMS_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_EXPANDDIMS_H_
#include <vector>
#include "include/errorcode.h"
#include "src/lite_kernel.h"
#include "nnacl/base/expand_dims_base.h"
#include "schema/model_generated.h"
#include "include/context.h"
using mindspore::lite::InnerContext;
namespace mindspore::kernel {
class ExpandDimsCPUKernel : public LiteKernel {
public:
ExpandDimsCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive), thread_count_(ctx->thread_num_) {}
~ExpandDimsCPUKernel() override = default;
int Init() override;
int ReSize() override;
int Run() override;
int DoExpandDims(int task_id);
private:
int thread_sz_count_;
int thread_sz_stride_;
size_t data_size_;
void *in_ptr_;
void *out_ptr_;
int thread_count_;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_CCSRC_KERNEL_CPU_ARM_FP32_EXPANDDIMS_H_

View File

@ -1,46 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp32/flatten_fp32.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Flatten;
namespace mindspore::kernel {
int FlattenCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int FlattenCPUKernel::ReSize() { return RET_OK; }
int FlattenCPUKernel::Run() {
auto input = in_tensors_.at(0);
auto output = out_tensors_.at(0);
memcpy(output->data_c(), input->data_c(), output->Size());
return RET_OK;
}
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Flatten, LiteKernelCreator<FlattenCPUKernel>)
} // namespace mindspore::kernel

View File

@ -1,40 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_FLATTEN_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_FLATTEN_H_
#include <vector>
#include "src/lite_kernel.h"
#include "include/context.h"
using mindspore::lite::InnerContext;
namespace mindspore::kernel {
class FlattenCPUKernel : public LiteKernel {
public:
FlattenCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~FlattenCPUKernel() override = default;
int Init() override;
int ReSize() override;
int Run() override;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_FLATTEN_H_

View File

@ -1,88 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp32/unsqueeze_fp32.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
#include "src/runtime/runtime_api.h"
#include "nnacl/base/unsqueeze_base.h"
using mindspore::kernel::KERNEL_ARCH::kCPU;
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Unsqueeze;
namespace mindspore::kernel {
int UnsqueezeCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int UnsqueezeCPUKernel::ReSize() {
data_size_ = in_tensors_.at(0)->ElementsNum();
thread_sz_count_ = MSMIN(context_->thread_num_, data_size_);
if (thread_sz_count_ == 0) {
thread_sz_stride_ = 0;
return RET_OK;
}
thread_sz_stride_ = UP_DIV(data_size_, thread_sz_count_);
return RET_OK;
}
int UnsqueezeCPUKernel::DoUnsqueeze(int task_id) {
size_t size = MSMIN(thread_sz_stride_, data_size_ - task_id * thread_sz_stride_);
if (size == 0) {
return RET_OK;
}
size_t offset = task_id * thread_sz_stride_ * sizeof(float);
MS_ASSERT(in_ptr_);
MS_ASSERT(out_ptr_);
int ret = Unsqueeze(in_ptr_ + offset, out_ptr_ + offset, size * sizeof(float));
if (ret != RET_OK) {
MS_LOG(ERROR) << "UnsqueezeRun error task_id[" << task_id << "] error_code[" << ret << "]";
return ret;
}
return RET_OK;
}
int UnsqueezeRun(void *cdata, int task_id) {
auto g_kernel = reinterpret_cast<UnsqueezeCPUKernel *>(cdata);
auto ret = g_kernel->DoUnsqueeze(task_id);
if (ret != RET_OK) {
MS_LOG(ERROR) << "UnsqueezeRun error task_id[" << task_id << "] error_code[" << ret << "]";
return ret;
}
return RET_OK;
}
int UnsqueezeCPUKernel::Run() {
in_ptr_ = reinterpret_cast<int8_t *>(in_tensors_.at(0)->MutableData());
out_ptr_ = reinterpret_cast<int8_t *>(out_tensors_.at(0)->MutableData());
auto ret = ParallelLaunch(this->context_->thread_pool_, UnsqueezeRun, this, thread_sz_count_);
if (ret != RET_OK) {
MS_LOG(ERROR) << "UnsqueezeRun error error_code[" << ret << "]";
return ret;
}
return RET_OK;
}
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Unsqueeze, LiteKernelCreator<UnsqueezeCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Unsqueeze, LiteKernelCreator<UnsqueezeCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeInt64, PrimitiveType_Unsqueeze, LiteKernelCreator<UnsqueezeCPUKernel>)
} // namespace mindspore::kernel

View File

@ -1,49 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_UNSQUEEZE_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_UNSQUEEZE_H_
#include <vector>
#include "src/lite_kernel.h"
#include "include/context.h"
#include "nnacl/unsqueeze_parameter.h"
using mindspore::lite::InnerContext;
namespace mindspore::kernel {
class UnsqueezeCPUKernel : public LiteKernel {
public:
UnsqueezeCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~UnsqueezeCPUKernel() = default;
int Init() override;
int ReSize() override;
int Run() override;
int DoUnsqueeze(int task_id);
private:
int thread_sz_count_;
int thread_sz_stride_;
int data_size_;
int8_t *in_ptr_;
int8_t *out_ptr_;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_UNSQUEEZE_H_