!12586 support invert bool tensor

From: @zhangbuxue
Reviewed-by: @zh_qh,@ginfung,@zh_qh
Signed-off-by: @zh_qh,@zh_qh
This commit is contained in:
mindspore-ci-bot 2021-02-25 09:37:43 +08:00 committed by Gitee
commit 5b206557d2
5 changed files with 92 additions and 2 deletions

View File

@ -93,7 +93,7 @@ convert_object_map = {
T.xor: NO_IMPLEMENT,
T.pos: multitype_ops.uadd,
T.neg: multitype_ops.negative,
T.invert: NO_IMPLEMENT,
T.invert: F.logical_not,
T.not_: multitype_ops.logical_not,
T.eq: multitype_ops.equal,
T.ne: multitype_ops.not_equal,

View File

@ -153,6 +153,10 @@ class Tensor(Tensor_):
out = tensor_operator_registry.get('__neg__')(self)
return out
def __invert__(self):
out = tensor_operator_registry.get('__logical_not__')(self)
return out
def __bool__(self):
data = self.asnumpy()
if data.shape == ():

View File

@ -223,6 +223,7 @@ tensor_operator_registry.register('__lt__', tensor_lt)
tensor_operator_registry.register('__le__', tensor_le)
tensor_operator_registry.register('__gt__', tensor_gt)
tensor_operator_registry.register('__ge__', tensor_ge)
tensor_operator_registry.register('__logical_not__', logical_not)
tensor_operator_registry.register('shape', shape)
tensor_operator_registry.register('squeeze', squeeze)
# support GE backend for no compare operators

View File

@ -3104,9 +3104,15 @@ class LogicalNot(PrimitiveWithInfer):
return x_shape
def infer_dtype(self, x_dtype):
validator.check_tensor_dtype_valid("x", x_dtype, [mstype.bool_], self.name)
validator.check_tensor_dtype_valid("x", x_dtype, [mstype.bool_], self.name + " or '~' operator")
return mstype.tensor_type(mstype.bool_)
def infer_value(self, x):
if x is not None:
x = x.asnumpy()
return Tensor(np.logical_not(x))
return None
class LogicalAnd(_LogicBinaryOp):
"""
@ -3145,6 +3151,14 @@ class LogicalAnd(_LogicBinaryOp):
def infer_dtype(self, x_dtype, y_dtype):
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,), self.name)
def infer_value(self, x, y):
if x is not None and y is not None:
x = x.asnumpy()
y = y.asnumpy()
out = np.array(np.logical_and(x, y))
return Tensor(out)
return None
class LogicalOr(_LogicBinaryOp):
"""
@ -3183,6 +3197,14 @@ class LogicalOr(_LogicBinaryOp):
def infer_dtype(self, x_dtype, y_dtype):
return _LogicBinaryOp.do_infer_dtype(x_dtype, y_dtype, (mstype.bool_,), self.name)
def infer_value(self, x, y):
if x is not None and y is not None:
x = x.asnumpy()
y = y.asnumpy()
out = np.array(np.logical_or(x, y))
return Tensor(out)
return None
class IsNan(PrimitiveWithInfer):
"""

View File

@ -0,0 +1,63 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test '~' """
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
class InvertNet(nn.Cell):
def __init__(self):
super(InvertNet, self).__init__()
self.t = Tensor(np.array([True, False, True]))
def construct(self, x):
invert_t = ~self.t
invert_x = ~x
ret = (invert_t, invert_x)
return ret
def test_invert_bool_tensor():
net = InvertNet()
input_x = Tensor(np.array([False, True, False]))
context.set_context(mode=context.PYNATIVE_MODE)
ret = net(input_x)
assert (ret[0].asnumpy() == np.array([False, True, False])).all()
assert (ret[1].asnumpy() == np.array([True, False, True])).all()
context.set_context(mode=context.GRAPH_MODE)
net(input_x)
def test_invert_int_tensor():
net = InvertNet()
input_x = Tensor(np.array([1, 2, 3], np.int32))
context.set_context(mode=context.PYNATIVE_MODE)
with pytest.raises(TypeError) as err:
net(input_x)
assert "For 'LogicalNot or '~' operator', the type of `x` should be subclass of Tensor[Bool], " \
"but got Tensor[Int32]" in str(err.value)
context.set_context(mode=context.GRAPH_MODE)
with pytest.raises(TypeError) as err:
net(input_x)
assert "For 'LogicalNot or '~' operator', the type of `x` should be subclass of Tensor[Bool], " \
"but got Tensor[Int32]" in str(err.value)