forked from mindspore-Ecosystem/mindspore
!12724 add Dropout2D and rename Dropout3d to Dropout3D
From: @yanzhenxiang2020 Reviewed-by: Signed-off-by:
This commit is contained in:
commit
5a6bb251b0
|
@ -52,9 +52,11 @@ constexpr auto kCacheSwapTable = "CacheSwapTable";
|
|||
constexpr auto kSubAndFilter = "SubAndFilter";
|
||||
constexpr auto kPadAndShift = "PadAndShift";
|
||||
constexpr auto kCustRunApi = "RunCpuKernel";
|
||||
constexpr auto kDropout3d = "Dropout3d";
|
||||
constexpr auto kDropout2D = "Dropout2D";
|
||||
constexpr auto kDropout3D = "Dropout3D";
|
||||
const std::set<std::string> kCustAiCpuKernelOps{kIdentity};
|
||||
const std::set<std::string> kCacheKernelOps{kUpdateCache, kCacheSwapTable, kSubAndFilter, kPadAndShift, kDropout3d};
|
||||
const std::set<std::string> kCacheKernelOps{kUpdateCache, kCacheSwapTable, kSubAndFilter,
|
||||
kPadAndShift, kDropout3D, kDropout2D};
|
||||
|
||||
struct AicpuParamHead {
|
||||
uint32_t length; // Total length: include cunstom message
|
||||
|
|
|
@ -1188,6 +1188,46 @@ def get_bprop_dropout(self):
|
|||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Dropout2D)
|
||||
def get_bprop_dropout2d(self):
|
||||
"""Grad definition for `Dropout2D` operation."""
|
||||
dtype = P.DType()
|
||||
cast = P.Cast()
|
||||
mul = P.Mul()
|
||||
keep_prob = self.keep_prob
|
||||
|
||||
def bprop(x, out, dout):
|
||||
_, mask = dout
|
||||
y = cast(mask, mstype.float32)
|
||||
if keep_prob != 0:
|
||||
y = y * (1 / keep_prob)
|
||||
y = mul(x, y)
|
||||
y = cast(y, dtype(x))
|
||||
return (y,)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.Dropout3D)
|
||||
def get_bprop_dropout3d(self):
|
||||
"""Grad definition for `Dropout3D` operation."""
|
||||
dtype = P.DType()
|
||||
cast = P.Cast()
|
||||
mul = P.Mul()
|
||||
keep_prob = self.keep_prob
|
||||
|
||||
def bprop(x, out, dout):
|
||||
_, mask = dout
|
||||
y = cast(mask, mstype.float32)
|
||||
if keep_prob != 0:
|
||||
y = y * (1 / keep_prob)
|
||||
y = mul(x, y)
|
||||
y = cast(y, dtype(x))
|
||||
return (y,)
|
||||
|
||||
return bprop
|
||||
|
||||
|
||||
@bprop_getters.register(P.CTCLoss)
|
||||
def get_bprop_ctc_loss(self):
|
||||
"""Grad definition for `CTCLoss` operation"""
|
||||
|
|
|
@ -27,6 +27,7 @@ from .unique_with_pad import _unique_with_pad_aicpu
|
|||
from .sub_and_filter import _sub_and_filter_aicpu
|
||||
from .pad_and_shift import _pad_and_shift_aicpu
|
||||
from .dropout_genmask import _dropout_genmask_aicpu
|
||||
from .dropout2d import _dropout2d_aicpu
|
||||
from .dropout3d import _dropout3d_aicpu
|
||||
from .get_next import _get_next_aicpu
|
||||
from .print_tensor import _print_aicpu
|
||||
|
|
|
@ -0,0 +1,42 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Dropout2D op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
dropout2d_op_info = AiCPURegOp("Dropout2D") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "x", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.output(1, "mask", "required") \
|
||||
.attr("keep_prob", "float") \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U64_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(dropout2d_op_info)
|
||||
def _dropout2d_aicpu():
|
||||
"""Dropout2D AiCPU register"""
|
||||
return
|
|
@ -13,30 +13,30 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Dropout3d op"""
|
||||
"""Dropout3D op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, AiCPURegOp, DataType
|
||||
dropout3d_op_info = AiCPURegOp("Dropout3d") \
|
||||
dropout3d_op_info = AiCPURegOp("Dropout3D") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.input(0, "x", "required") \
|
||||
.output(0, "y", "required") \
|
||||
.output(1, "mask", "required") \
|
||||
.attr("keep_prob", "float") \
|
||||
.attr("inplace", "bool") \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I16_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U16_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U32_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U64_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default) \
|
||||
.dtype_format(DataType.BOOL_Default, DataType.BOOL_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I8_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I16_Default, DataType.I16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.I64_Default, DataType.I64_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.U8_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U16_Default, DataType.U16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U32_Default, DataType.U32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.U64_Default, DataType.U64_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.BOOL_Default) \
|
||||
.dtype_format(DataType.F64_Default, DataType.F64_Default, DataType.BOOL_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(dropout3d_op_info)
|
||||
def _dropout3d_aicpu():
|
||||
"""Dropout3d AiCPU register"""
|
||||
"""Dropout3D AiCPU register"""
|
||||
return
|
||||
|
|
|
@ -64,7 +64,7 @@ from .random_ops import (RandomChoiceWithMask, StandardNormal, Gamma, Poisson, U
|
|||
from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, AdamNoUpdateParam, ApplyMomentum, BatchNorm,
|
||||
BiasAdd, Conv2D,
|
||||
DepthwiseConv2dNative,
|
||||
DropoutDoMask, Dropout, Dropout3d, DropoutGenMask, Flatten,
|
||||
DropoutDoMask, Dropout, Dropout2D, Dropout3D, DropoutGenMask, Flatten,
|
||||
FusedBatchNorm, FusedBatchNormEx, InstanceNorm, BNTrainingReduce, BNTrainingUpdate,
|
||||
GeLU, Gelu, FastGeLU, FastGelu, Elu,
|
||||
|
||||
|
@ -252,6 +252,8 @@ __all__ = [
|
|||
'DropoutDoMask',
|
||||
'DropoutGenMask',
|
||||
'Dropout',
|
||||
'Dropout2D',
|
||||
'Dropout3D',
|
||||
'Neg',
|
||||
'InplaceAdd',
|
||||
'InplaceSub',
|
||||
|
|
|
@ -7055,22 +7055,77 @@ class Dropout(PrimitiveWithCheck):
|
|||
validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name)
|
||||
|
||||
|
||||
class Dropout3d(PrimitiveWithInfer):
|
||||
class Dropout2D(PrimitiveWithInfer):
|
||||
"""
|
||||
During training, randomly zeroes some of the channels of the input tensor
|
||||
with probability keep_prob from a Bernoulli distribution.
|
||||
with probability 1-`keep_prob` from a Bernoulli distribution.
|
||||
|
||||
Args:
|
||||
keep_prob (float): The keep probability of a channel, between 0 and 1, e.g. `keep_prob` = 0.8,
|
||||
means dropping out %20 of channels. Default: 0.5.
|
||||
inplace (bool): When `inplace` is True, this operation will be done in-place. Default: False.
|
||||
means dropping out 20% of channels. Default: 0.5.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - A 4-D tensor with shape :math:`(N, C, H, W)`.
|
||||
|
||||
Outputs:
|
||||
- **output** (Tensor) - with the same shape and data type as the input tensor.
|
||||
- **mask** (Tensor[bool]) - with the same shape as the input tensor.
|
||||
|
||||
Raises:
|
||||
TypeError: If the data type of `keep_prob` is not float.
|
||||
ValueError: If `keep_prob` is out of the range [0.0, 1.0];
|
||||
or if the dim of input is not 4-D.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> dropout = ops.Dropout2D(keep_prob=0.5)
|
||||
>>> x = Tensor(np.random.randn(2, 1, 2, 3), mindspore.float32)
|
||||
>>> output, mask = dropout(x)
|
||||
>>> print(output)
|
||||
[[[[0. 0. 0.]
|
||||
[0. 0. 0.]]]
|
||||
[[[0.88 -2.98 -0.01]
|
||||
[2.16 -0.34 1.57]]]]
|
||||
>>> print(mask)
|
||||
[[[[False False False]
|
||||
[False False False]]]
|
||||
[[[True True True]
|
||||
[True True True]]]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, keep_prob=0.5):
|
||||
self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name)
|
||||
self.keep_prob = validator.check_float_range(keep_prob, 0.0, 1.0, Rel.INC_BOTH, "keep_prob", self.name)
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
validator.check_int(len(x_shape), 4, Rel.EQ, "dim of input", self.name)
|
||||
return x_shape, x_shape
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
valid_dtypes = mstype.int_type + (mstype.float16, mstype.float32)
|
||||
validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name)
|
||||
mask_dtype = mstype.tensor_type(mstype.bool_)
|
||||
return x_dtype, mask_dtype
|
||||
|
||||
|
||||
class Dropout3D(PrimitiveWithInfer):
|
||||
"""
|
||||
During training, randomly zeroes some of the channels of the input tensor
|
||||
with probability 1-`keep_prob` from a Bernoulli distribution.
|
||||
|
||||
Args:
|
||||
keep_prob (float): The keep probability of a channel, between 0 and 1, e.g. `keep_prob` = 0.8,
|
||||
means dropping out 20% of channels. Default: 0.5.
|
||||
|
||||
Inputs:
|
||||
- **input** (Tensor) - A 5-D tensor with shape :math:`(N, C, D, H, W)`.
|
||||
When `inplace` is True, `input` should be Parameter.
|
||||
|
||||
Outputs:
|
||||
- **output** (Tensor) - with the same shape as the input tensor.
|
||||
- **output** (Tensor) - with the same shape and data type as the input tensor.
|
||||
- **mask** (Tensor[bool]) - with the same shape as the input tensor.
|
||||
|
||||
Raises:
|
||||
TypeError: If the data type of `keep_prob` is not float.
|
||||
|
@ -7081,30 +7136,35 @@ class Dropout3d(PrimitiveWithInfer):
|
|||
``Ascend``
|
||||
|
||||
Examples:
|
||||
>>> dropout = ops.Dropout3d(keep_prob=0.5)
|
||||
>>> dropout = ops.Dropout3D(keep_prob=0.5)
|
||||
>>> x = Tensor(np.random.randn(2, 1, 2, 1, 2), mindspore.float32)
|
||||
>>> output = dropout(x)
|
||||
>>> output, mask = dropout(x)
|
||||
>>> print(output)
|
||||
[[[[[0. 0.]]
|
||||
[[0. 0.]]]]
|
||||
[[[[-2.98 -0.01]]
|
||||
[[-0.34 1.57]]]]]
|
||||
>>> print(mask)
|
||||
[[[[[False False]]
|
||||
[[False False]]]]
|
||||
[[[[True True]]
|
||||
[[True True]]]]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, keep_prob=0.5, inplace=False):
|
||||
self.inplace = validator.check_value_type("inplace", inplace, [bool], self.name)
|
||||
def __init__(self, keep_prob=0.5):
|
||||
self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name)
|
||||
self.keep_prob = validator.check_float_range(keep_prob, 0.0, 1.0, Rel.INC_BOTH, "keep_prob", self.name)
|
||||
|
||||
def infer_shape(self, x_shape):
|
||||
validator.check_int(len(x_shape), 5, Rel.GE, "dim of input", self.name)
|
||||
return x_shape
|
||||
validator.check_int(len(x_shape), 5, Rel.EQ, "dim of input", self.name)
|
||||
return x_shape, x_shape
|
||||
|
||||
def infer_dtype(self, x_dtype):
|
||||
valid_dtypes = mstype.number_type + (mstype.bool_,)
|
||||
valid_dtypes = mstype.int_type + (mstype.float16, mstype.float32)
|
||||
validator.check_tensor_dtype_valid("x", x_dtype, valid_dtypes, self.name)
|
||||
return x_dtype
|
||||
mask_dtype = mstype.tensor_type(mstype.bool_)
|
||||
return x_dtype, mask_dtype
|
||||
|
||||
|
||||
class CTCLoss(PrimitiveWithInfer):
|
||||
|
|
|
@ -0,0 +1,69 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
dtype = np.float16
|
||||
x0 = Tensor(np.random.randn(3, 4, 3, 3).astype(dtype))
|
||||
x1 = Tensor(np.random.randn(3, 4, 3, 3).astype(dtype))
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, keep_prob):
|
||||
super(Net, self).__init__()
|
||||
self.drop = P.Dropout2D(keep_prob=keep_prob)
|
||||
|
||||
def construct(self, x):
|
||||
return self.drop(x)
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
self.network.set_train()
|
||||
|
||||
def construct(self, x, y):
|
||||
return self.grad(self.network)(x, y)
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
net = Net(0.7)
|
||||
output, mask = net(x0)
|
||||
print(x0)
|
||||
print(output)
|
||||
|
||||
y = (output.asnumpy() == (x0.asnumpy()/0.7).astype(dtype)).reshape(3*4, 3*3)
|
||||
output_reshape = output.asnumpy().reshape(3*4, 3*3)
|
||||
for i in range(3*4):
|
||||
if not y[i].all():
|
||||
assert output_reshape[i].sum() == 0
|
||||
return output, mask
|
||||
|
||||
|
||||
def test_net_grad():
|
||||
net = Grad(Net(0.7))
|
||||
y = test_net_float32()
|
||||
output = net(x1, y)
|
||||
print("input: ", x1)
|
||||
print("forward output: ", y)
|
||||
print("backward output: ", output)
|
|
@ -13,52 +13,57 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops.composite import GradOperation
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
dtype = np.float16
|
||||
x0 = Tensor(np.random.randn(3, 4, 3, 3, 3).astype(dtype))
|
||||
x1 = Tensor(np.random.randn(3, 4, 3, 3, 3).astype(dtype))
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, keep_prob, inplace):
|
||||
def __init__(self, keep_prob):
|
||||
super(Net, self).__init__()
|
||||
self.drop = P.Dropout3d(keep_prob=keep_prob, inplace=inplace)
|
||||
self.drop = P.Dropout3D(keep_prob=keep_prob)
|
||||
|
||||
def construct(self, x):
|
||||
return self.drop(x)
|
||||
|
||||
|
||||
class NetInplace(nn.Cell):
|
||||
def __init__(self, keep_prob, inplace, x):
|
||||
super(NetInplace, self).__init__()
|
||||
self.drop = P.Dropout3d(keep_prob=keep_prob, inplace=inplace)
|
||||
self.x = x
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
self.network.set_train()
|
||||
|
||||
def construct(self):
|
||||
return self.drop(self.x)
|
||||
def construct(self, x, y):
|
||||
return self.grad(self.network)(x, y)
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
x = Tensor(np.random.randn(3, 4, 3, 3, 3), mindspore.float32)
|
||||
net = Net(0.7, False)
|
||||
output = net(x)
|
||||
print(x)
|
||||
net = Net(0.7)
|
||||
output, mask = net(x0)
|
||||
print(x0)
|
||||
print(output)
|
||||
|
||||
y = (output.asnumpy() == x.asnumpy()/0.7).reshape(3*4, 3*3*3)
|
||||
y = (output.asnumpy() == (x0.asnumpy()/0.7).astype(dtype)).reshape(3*4, 3*3*3)
|
||||
output_reshape = output.asnumpy().reshape(3*4, 3*3*3)
|
||||
for i in range(3*4):
|
||||
if not y[i].all():
|
||||
assert y[i].sum() == 0
|
||||
assert output_reshape[i].sum() == 0
|
||||
return output, mask
|
||||
|
||||
|
||||
def test_net_float32_inplace():
|
||||
x = mindspore.Parameter(Tensor(np.random.randn(3, 4, 3, 3, 3), mindspore.float32))
|
||||
net = NetInplace(0.7, True, x)
|
||||
output = net()
|
||||
print(Tensor(x))
|
||||
print(output)
|
||||
assert np.array_equal(x.asnumpy(), output.asnumpy())
|
||||
def test_net_grad():
|
||||
net = Grad(Net(0.7))
|
||||
y = test_net_float32()
|
||||
output = net(x1, y)
|
||||
print("input: ", x1)
|
||||
print("forward output: ", y)
|
||||
print("backward output: ", output)
|
||||
|
|
Loading…
Reference in New Issue