!220 Add parallel operator for DropoutDoMask

Merge pull request !220 from yangzhenzhang/dropoutdomask
This commit is contained in:
mindspore-ci-bot 2020-04-11 15:01:43 +08:00 committed by Gitee
commit 5141054ecd
15 changed files with 358 additions and 627 deletions

View File

@ -613,5 +613,15 @@ double ReduceMeanCost::GetForwardComputationCost(const std::vector<TensorInfo>&
return result;
}
double DropOutCost::GetForwardComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>&,
const int32_t&) const {
if (inputs.empty()) {
return 0.0;
}
TensorInfo input0 = inputs[0];
Shape input0_slice_shape = input0.slice_shape();
return ListProduct(input0_slice_shape) * static_cast<double>(inputs_type_lengths_[0]) * DROPOUT_COST_RATE;
}
} // namespace parallel
} // namespace mindspore

View File

@ -26,6 +26,7 @@ namespace mindspore {
namespace parallel {
#define MAXIMUM_INPUT_NUMBER 100
#define DEFAULT_DATA_TYPE_LENGTH 4
#define DROPOUT_COST_RATE 1.125 // the DropoutGenMask need 12.5% memory
class OperatorCost;
using OperatorCostPtr = std::shared_ptr<OperatorCost>;
@ -493,6 +494,37 @@ class GetNextCost : public OperatorCost {
}
};
using GetNextCostPtr = std::shared_ptr<GetNextCost>;
class DropOutCost : public OperatorCost {
public:
DropOutCost() = default;
~DropOutCost() override = default;
double GetCommCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
return 0.0;
}
double GetBackwardCommCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
return 0.0;
}
double GetComputationCost(const std::vector<TensorInfo>& inputs, const std::vector<TensorInfo>& outputs,
const int32_t& stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo>&, const std::vector<TensorInfo>&,
const int32_t&) const override {
return 0.0;
}
};
using DropOutCostPtr = std::shared_ptr<DropOutCost>;
} // namespace parallel
} // namespace mindspore
#endif // PARALLEL_AUTO_PARALLEL_OPERATOR_COSTMODEL_H_

View File

@ -111,7 +111,6 @@ REGISTER(ReduceMinInfo);
REGISTER(TransposeInfo);
REGISTER(PReLUInfo);
REGISTER(DropoutDoMaskInfo);
REGISTER(DropoutGenMaskInfo)
REGISTER(ReshapeInfo);
REGISTER(FloorDivInfo);
REGISTER(MaximumInfo);

View File

@ -71,6 +71,7 @@ const std::set<std::string> BLACK_LIST = {TUPLE_GETITEM,
BROADCASTGRADIENTARGS,
INVERTPERMUTATION,
CONTROLDEPEND,
DROPOUT_GEN_MASK,
EMBED,
CREATINSTANCE,
ZEROSLIKETENSOR,

View File

@ -1,5 +1,5 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
@ -22,6 +22,7 @@
#include <vector>
#include "ir/value.h"
#include "pipeline/resource.h"
#include "parallel/auto_parallel/costmodel.h"
#include "parallel/device_matrix.h"
#include "parallel/strategy.h"
@ -29,13 +30,32 @@
namespace mindspore {
namespace parallel {
static int32_t SEED_NUM = 1;
Status DropoutDoMaskInfo::CheckStrategy(const StrategyPtr& strategy) {
Shapes input_shape = {inputs_shape_.at(0)};
if (strategy == nullptr) {
MS_LOG(ERROR) << name_ << ": The strategy is null";
return FAILED;
}
std::vector<Dimensions> stra = strategy->GetInputDim();
if (stra.size() != 1) {
MS_LOG(ERROR) << name_ << ": Invalid strategy size " << stra.size() << ", it must be 1";
return FAILED;
}
if (inputs_shape_.empty()) {
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
return FAILED;
}
// only check the input[0]
Shapes input_shape = {inputs_shape_[0]};
if (CheckStrategyValue(strategy, input_shape, is_auto_parallel_) != SUCCESS) {
if (is_auto_parallel_) {
MS_LOG(DEBUG) << name_ << " : Invalid strategy.";
MS_LOG(DEBUG) << name_ << ": Invalid strategy";
} else {
MS_LOG(ERROR) << name_ << " : Invalid strategy.";
MS_LOG(ERROR) << name_ << ": Invalid strategy";
}
return FAILED;
}
@ -43,68 +63,69 @@ Status DropoutDoMaskInfo::CheckStrategy(const StrategyPtr& strategy) {
}
Status DropoutDoMaskInfo::InferDevMatrixShape() {
std::vector<Dimensions> stra = strategy_->GetInputDim();
Dimensions input_strategy = stra.at(0);
if (strategy_ == nullptr) {
MS_LOG(ERROR) << name_ << ": The strategy is null";
return FAILED;
}
dev_matrix_shape_ = input_strategy;
std::vector<Dimensions> strategy = strategy_->GetInputDim();
if (strategy.empty()) {
MS_LOG(ERROR) << name_ << ": The strategy is empty";
return FAILED;
}
dev_matrix_shape_ = strategy[0];
return SUCCESS;
}
Status DropoutDoMaskInfo::InferTensorMap() {
std::vector<int32_t> tensor_map_index;
size_t size = inputs_shape_.at(0).size();
// such as 4: tensor_map_index [3,2,1,0]
for (size_t i = 0; i < size; ++i) {
tensor_map_index.push_back((int32_t)(LAST_INDEX(size) - i));
if (inputs_shape_.empty()) {
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
return FAILED;
}
TensorMap input_b_tensor_map = {MAP_NONE};
inputs_tensor_map_.push_back(tensor_map_index);
inputs_tensor_map_.push_back(input_b_tensor_map);
outputs_tensor_map_.push_back(tensor_map_index);
std::vector<int32_t> tensor_map_index;
size_t size = inputs_shape_[0].size();
// if the dimension of input is 4, and tensor_map_index is [3, 2, 1, 0]
for (size_t i = 0; i < size; ++i) {
tensor_map_index.push_back(SizeToInt(size - i - 1));
}
// the input[1] do not need tensor map
inputs_tensor_map_.push_back(tensor_map_index); // input_0
outputs_tensor_map_.push_back(tensor_map_index); // output
return SUCCESS;
}
Status DropoutDoMaskInfo::InferTensorInfo() {
// infer tensor shape
Shape input_a_shape = inputs_shape_.at(0);
Shape input_b_shape = inputs_shape_.at(1);
Shape output_shape = outputs_shape_.at(0);
// infer slice shape
Shapes inputs_slice_shape, outputs_slice_shape;
Strategys inputs_strategy = strategy_->GetInputDim();
Dimensions input_b_strategy = {1}, input_x_strategy = {};
inputs_strategy.emplace_back(input_b_strategy);
inputs_strategy.emplace_back(input_x_strategy);
Strategys outputs_strategy = {inputs_strategy.at(0)};
if (InferSliceShape(inputs_strategy, outputs_strategy, &inputs_slice_shape, &outputs_slice_shape) != SUCCESS) {
if (inputs_shape_.size() != 3) {
MS_LOG(ERROR) << name_ << ": Invalid inputs shape size " << inputs_shape_.size();
return FAILED;
}
Shape input_a_slice_shape = inputs_slice_shape.at(0);
Shape input_b_slice_shape = inputs_slice_shape.at(1);
Shape output_slice_shape = outputs_slice_shape.at(0);
TensorLayout input_a_tensor_layout, input_b_tensor_layout;
TensorLayout output_tensor_layout;
if (input_a_tensor_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], input_a_shape) != SUCCESS) {
if (strategy_ == nullptr) {
MS_LOG(ERROR) << name_ << ": The strategy is null";
return FAILED;
}
if (input_b_tensor_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[1], input_b_shape) != SUCCESS) {
Shape input_0_shape = inputs_shape_[0];
if (inputs_tensor_map_.empty()) {
MS_LOG(ERROR) << name_ << ": The inputs tensor map is empty";
return FAILED;
}
if (output_tensor_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], output_shape) != SUCCESS) {
TensorLayout input_0_tensor_layout;
if (input_0_tensor_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], input_0_shape) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Init tensor layout failed";
return FAILED;
}
TensorInfo input_a_tensor_info(input_a_tensor_layout, input_a_shape, input_a_slice_shape);
TensorInfo input_b_tensor_info(input_b_tensor_layout, input_b_shape, input_b_slice_shape);
TensorInfo output_tensor_info(output_tensor_layout, output_shape, output_slice_shape);
inputs_tensor_info_.push_back(input_a_tensor_info);
inputs_tensor_info_.push_back(input_b_tensor_info);
outputs_tensor_info_.push_back(output_tensor_info);
TensorInfo input_0_tensor_info(input_0_tensor_layout);
// input_1 do not need tensor info
inputs_tensor_info_.push_back(input_0_tensor_info); // input_0
outputs_tensor_info_.push_back(input_0_tensor_info); // output
return SUCCESS;
}
@ -122,20 +143,29 @@ Status DropoutDoMaskInfo::SetCostUnderStrategy(const StrategyPtr& strategy) {
}
Status DropoutDoMaskInfo::GenerateStrategies(int32_t stage_id) {
CheckGlobalDeviceManager();
is_auto_parallel_ = true;
size_t dev_num = g_device_manager->GetDeviceListByStageId(stage_id).size();
Dimensions strategy(inputs_shape_[0].size() - 1, 1);
(void)strategy.insert(strategy.begin(), SizeToInt(dev_num));
std::vector<Dimensions> stra = {strategy};
StrategyPtr sp = std::make_shared<Strategy>(stage_id, stra);
if (SetCostUnderStrategy(sp) == SUCCESS) {
MS_LOG(INFO) << name_ << " : Successfully generated batch-parallel-strategy.";
PrintStrategy(sp);
} else {
MS_LOG(ERROR) << name_ << " : Generating batch-parallel-strategy failed.";
if (inputs_shape_.empty()) {
MS_LOG(ERROR) << name_ << ": The inputs shape is empty";
return FAILED;
}
is_auto_parallel_ = true;
Shape input0_split(inputs_shape_[0].size(), 1);
Shapes splittable_inputs = {input0_split};
Shapes used_inputs_shape = {inputs_shape_[0]};
std::vector<StrategyPtr> sp_vector;
if (GenerateStrategiesForIndependentInputs(stage_id, used_inputs_shape, splittable_inputs, &sp_vector) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Generate strategies failed";
return FAILED;
}
size_t success = 0;
for (auto& sp : sp_vector) {
if (SetCostUnderStrategy(sp) == SUCCESS) {
success++;
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy";
PrintStrategy(sp);
}
}
return SUCCESS;
}
@ -150,26 +180,105 @@ std::shared_ptr<std::vector<std::vector<int32_t>>> DropoutDoMaskInfo::GenerateBa
Status DropoutDoMaskInfo::Init(const StrategyPtr& strategy) {
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Init failed.";
MS_LOG(ERROR) << name_ << ": Init failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << " : Init success.";
MS_LOG(INFO) << name_ << ": Init success.";
return SUCCESS;
}
Status DropoutDoMaskInfo::InitForCostModel(const StrategyPtr& strategy) {
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
if (is_auto_parallel_) {
MS_LOG(DEBUG) << name_ << " : Init for cost model failed.";
MS_LOG(DEBUG) << name_ << ": Init for cost model failed.";
} else {
MS_LOG(ERROR) << name_ << " : Init for cost model failed.";
MS_LOG(ERROR) << name_ << ": Init for cost model failed.";
}
return FAILED;
}
MS_LOG(INFO) << name_ << " : Init for cost model success.";
MS_LOG(INFO) << name_ << ": Init for cost model success.";
return SUCCESS;
}
PrimitivePtr GetDropoutGenMaskPrim(const CNodePtr& cnode) {
MS_EXCEPTION_IF_NULL(cnode);
if (cnode->inputs().size() != DROPOUT_DO_MASK_CNODE_INPUT_SIZE) {
MS_LOG(EXCEPTION) << "The size of dropout do mask cnode's inputs must be " << DROPOUT_DO_MASK_CNODE_INPUT_SIZE;
}
AnfNodePtr dropout_gen_mask = cnode->input(DROPOUT_GEN_MASK_INDEX);
MS_EXCEPTION_IF_NULL(dropout_gen_mask);
if (!dropout_gen_mask->isa<CNode>()) {
MS_LOG(EXCEPTION) << "The dropout do mask cnode's input[" << DROPOUT_GEN_MASK_INDEX << "] must be a cnode";
}
auto dropout_gen_mask_cnode = dropout_gen_mask->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(dropout_gen_mask_cnode);
if (dropout_gen_mask_cnode->inputs().size() != DROPOUT_GEN_MASK_CNODE_INPUT_SIZE) {
MS_LOG(EXCEPTION) << "The size of dropout gen mask cnode's inputs must be " << DROPOUT_GEN_MASK_CNODE_INPUT_SIZE;
}
if (!IsValueNode<Primitive>(dropout_gen_mask_cnode->input(0))) {
MS_LOG(EXCEPTION) << "The input[0] of dropout gen mask cnode is not primitive";
}
ValueNodePtr value_node = dropout_gen_mask_cnode->input(0)->cast<ValueNodePtr>();
MS_EXCEPTION_IF_NULL(value_node);
PrimitivePtr prim = value_node->value()->cast<PrimitivePtr>();
MS_EXCEPTION_IF_NULL(prim);
if (prim->name() != DROPOUT_GEN_MASK) {
MS_LOG(EXCEPTION) << "The primitive name is not DropoutGenMask";
}
return prim;
}
// DropoutDoMask needs to be used together with DropoutGenMask. Only the first input tensor of DropoutGenMask is
// split. Find the DropoutGenMask node in the anf graph according to DropoutDoMask node, and modify the input shape
// of DropoutGenMask according to the strategy of DropoutDoMask. When the DropoutDoMask performs repeated calculation
// and both seeds of DropoutGenMask are 0, two new seeds are automatically generated for DropoutGenMask.
Operator DropoutDoMaskInfo::GetDropoutGenMaskReplaceOp(const CNodePtr& cnode) {
MS_EXCEPTION_IF_NULL(cnode);
PrimitivePtr prim = GetDropoutGenMaskPrim(cnode);
MS_EXCEPTION_IF_NULL(prim);
if (inputs_tensor_info_.empty()) {
MS_LOG(EXCEPTION) << "The tensor info of dropout do mask is empty";
}
if (cnode->inputs().size() != DROPOUT_DO_MASK_CNODE_INPUT_SIZE) {
MS_LOG(EXCEPTION) << "The size of dropout do mask cnode's inputs must be " << DROPOUT_DO_MASK_CNODE_INPUT_SIZE;
}
if (!cnode->input(DROPOUT_DO_MASK_KEEP_PROB_INDEX)->isa<ValueNode>()) {
MS_LOG(EXCEPTION) << "The keep prob of dropout do mask is not value node";
}
ValuePtr keep_prob = GetValueNode(cnode->input(DROPOUT_DO_MASK_KEEP_PROB_INDEX));
MS_EXCEPTION_IF_NULL(keep_prob);
auto attr = prim->attrs();
if ((attr.find(SEED0) == attr.end()) || (attr.find(SEED1) == attr.end())) {
MS_LOG(EXCEPTION) << "The attrs of dropout gen mask must be have seed0 and seed1";
}
int32_t seed_0 = GetValue<int32_t>(attr[SEED0]);
int32_t seed_1 = GetValue<int32_t>(attr[SEED1]);
if ((seed_0 == 0) && (seed_1 == 0) && (repeated_calc_num_ > 1)) {
seed_0 = SEED_NUM;
seed_1 = SEED_NUM;
SEED_NUM++;
}
Shape input_slice_shape = inputs_tensor_info_[0].slice_shape();
ValuePtr new_shape = MakeValue(input_slice_shape);
Attr attr_0 = std::make_pair(SEED0, MakeValue(seed_0));
Attr attr_1 = std::make_pair(SEED1, MakeValue(seed_1));
OperatorAttrs attrs = {attr_0, attr_1};
Attr param_0 = std::make_pair(SHAPE, new_shape);
Attr param_1 = std::make_pair(KEEP_PROB, keep_prob);
OperatorParams params = {std::make_pair(param_0, 1), std::make_pair(param_1, 2)};
OperatorArgs args = std::make_pair(attrs, params);
Operator replace_op = {std::make_pair(DROPOUT_GEN_MASK, args)};
return replace_op;
}
} // namespace parallel
} // namespace mindspore

View File

@ -33,7 +33,7 @@ class DropoutDoMaskInfo : public OperatorInfo {
public:
DropoutDoMaskInfo(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape,
const PrimitiveAttrs& attrs)
: OperatorInfo(name, inputs_shape, outputs_shape, attrs, std::make_shared<BatchParallelCost>()) {}
: OperatorInfo(name, inputs_shape, outputs_shape, attrs, std::make_shared<DropOutCost>()) {}
~DropoutDoMaskInfo() override = default;
Status Init(const StrategyPtr& strategy) override;
@ -41,6 +41,7 @@ class DropoutDoMaskInfo : public OperatorInfo {
Status SetCostUnderStrategy(const StrategyPtr& strategy) override;
Status InitForCostModel(const StrategyPtr& strategy) override;
std::shared_ptr<std::vector<std::vector<int32_t>>> GenerateBatchStrategies() override;
Operator GetDropoutGenMaskReplaceOp(const CNodePtr& cnode);
protected:
Status CheckStrategy(const StrategyPtr& strategy) override;
@ -51,6 +52,8 @@ class DropoutDoMaskInfo : public OperatorInfo {
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
};
using DropoutDoMaskInfoPtr = std::shared_ptr<DropoutDoMaskInfo>;
} // namespace parallel
} // namespace mindspore

View File

@ -1,188 +0,0 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "parallel/ops_info/generator_info.h"
#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include "ir/value.h"
#include "parallel/device_matrix.h"
#include "parallel/strategy.h"
#include "parallel/tensor_layout/tensor_redistribution.h"
namespace mindspore {
namespace parallel {
Status GeneratorBase::InferTensorMap() {
TensorMap output_tensor_map = {MAP_NONE};
outputs_tensor_map_.push_back(output_tensor_map);
return SUCCESS;
}
Status GeneratorBase::InferTensorInfo() {
Shape output_shape = outputs_shape_.at(0);
Shape output_slice_shape = outputs_shape_.at(0);
TensorLayout output_tensor_layout;
if (output_tensor_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], output_shape) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Creat output tensor layout failed.";
return FAILED;
}
TensorInfo output_tensor_info(output_tensor_layout, output_shape, output_slice_shape);
outputs_tensor_info_.push_back(output_tensor_info);
return SUCCESS;
}
Status GeneratorBase::InferDevMatrixShape() {
std::vector<Dimensions> stra = strategy_->GetInputDim();
Dimensions input_strategy = stra.at(0);
dev_matrix_shape_ = input_strategy;
return SUCCESS;
}
Status GeneratorBase::SetCostUnderStrategy(const StrategyPtr &strategy) {
if (SetCostUnderStrategyBase(strategy) != SUCCESS) {
if (is_auto_parallel_) {
MS_LOG(DEBUG) << name_ << " : Set cost under strategy failed.";
} else {
MS_LOG(ERROR) << name_ << " : Set cost under strategy failed.";
}
return FAILED;
}
return SUCCESS;
}
Status DropoutGenMaskInfo::GenerateStrategies(int32_t stage_id) {
if (input_value_.empty()) {
MS_LOG(ERROR) << name_ << " : Input value is empty.";
return FAILED;
}
Shape param = GetValue<const std::vector<int>>(input_value_[0]);
if (param.empty()) {
MS_LOG(ERROR) << name_ << " : Input value [0] is empty.";
return FAILED;
}
// Now,only support batch parallel.
CheckGlobalDeviceManager();
is_auto_parallel_ = true;
size_t dev_num = g_device_manager->GetDeviceListByStageId(stage_id).size();
Dimensions strategy(param.size() - 1, 1);
(void)strategy.insert(strategy.begin(), SizeToInt(dev_num));
std::vector<Dimensions> stra = {strategy};
StrategyPtr sp = std::make_shared<Strategy>(stage_id, stra);
if (SetCostUnderStrategy(sp) == SUCCESS) {
MS_LOG(INFO) << name_ << " : Successfully generated batch-parallel-strategy.";
PrintStrategy(sp);
} else {
MS_LOG(ERROR) << name_ << " : Generating batch-parallel-strategy failed.";
return FAILED;
}
return SUCCESS;
}
Status DropoutGenMaskInfo::CheckStrategy(const StrategyPtr &strategy) {
if (strategy->GetInputNumber() != 1) {
if (is_auto_parallel_) {
MS_LOG(DEBUG) << name_ << " : The strategy is wrong.";
} else {
MS_LOG(ERROR) << name_ << " : The strategy is wrong.";
}
return FAILED;
}
return SUCCESS;
}
Status DropoutGenMaskInfo::InferReplaceOps(const StrategyPtr &strategy) {
Shape shape = GetValue<const std::vector<int>>(input_value_[0]);
Strategys stra = strategy->GetInputDim();
Dimensions input_strategy = stra.at(0);
int32_t dev_num = *(input_strategy.begin());
if (dev_num <= 0) {
MS_LOG(ERROR) << name_ << " : The number of devices should not be less than 0.";
return FAILED;
}
// Batch parallel
if (shape[0] % dev_num != 0) {
MS_LOG(ERROR) << name_ << " : The shape " << shape[0] << " can't be exact divided by device number " << dev_num;
return FAILED;
}
shape[0] = shape[0] / dev_num;
ValuePtr shape_ptr = MakeValue(shape);
Attr attr_0 = std::make_pair(SEED0, attrs_[SEED0]);
Attr attr_1 = std::make_pair(SEED1, attrs_[SEED1]);
OperatorAttrs attrs = {attr_0, attr_1};
Attr param_0 = std::make_pair(SHAPE, shape_ptr);
Attr param_1 = std::make_pair(KEEP_PROB, input_value_[1]);
OperatorParams params = {std::make_pair(param_0, 1), std::make_pair(param_1, 2)};
OperatorArgs args = std::make_pair(attrs, params);
replace_op_ = {std::make_pair(DROPOUT_GEN_MASK, args)};
return SUCCESS;
}
std::shared_ptr<std::vector<std::vector<int32_t>>> DropoutGenMaskInfo::GenerateBatchStrategies() {
if (input_value_.empty()) {
MS_LOG(EXCEPTION) << name_ << " : Input value is empty.";
}
Shape param = GetValue<const std::vector<int>>(input_value_[0]);
if (param.empty()) {
MS_LOG(EXCEPTION) << name_ << " : Input value [0] is empty.";
}
// Now,only support batch parallel.
CheckGlobalDeviceManager();
size_t dev_num = g_device_manager->GetDeviceListByStageId(0).size();
Dimensions strategy(param.size() - 1, 1);
(void)strategy.insert(strategy.begin(), SizeToInt(dev_num));
std::vector<Dimensions> strategy_v = {strategy};
return std::make_shared<std::vector<std::vector<int32_t>>>(strategy_v);
}
Status GeneratorBase::Init(const StrategyPtr &strategy) {
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Init failed.";
return FAILED;
}
if (InferReplaceOps(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Infer replace ops failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << " : Init success.";
return SUCCESS;
}
Status GeneratorBase::InitForCostModel(const StrategyPtr &strategy) {
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
if (is_auto_parallel_) {
MS_LOG(DEBUG) << name_ << " : Init for cost model failed.";
} else {
MS_LOG(ERROR) << name_ << " : Init for cost model failed.";
}
return FAILED;
}
MS_LOG(INFO) << name_ << " : Init for cost model success.";
return SUCCESS;
}
} // namespace parallel
} // namespace mindspore

View File

@ -1,70 +0,0 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PARALLEL_OPS_INFO_GENERATOR_INFO_H_
#define MINDSPORE_CCSRC_PARALLEL_OPS_INFO_GENERATOR_INFO_H_
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "parallel/auto_parallel/operator_costmodel.h"
#include "parallel/ops_info/operator_info.h"
#include "parallel/strategy.h"
namespace mindspore {
namespace parallel {
class GeneratorBase : public OperatorInfo {
public:
GeneratorBase(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<GeneratorBaseCost>()) {}
~GeneratorBase() override = default;
Status Init(const StrategyPtr &strategy) override;
Status SetCostUnderStrategy(const StrategyPtr &strategy) override;
Status InitForCostModel(const StrategyPtr &strategy) override;
protected:
// For now, generator ops don't have attributes
Status GetAttrs() override { return Status::SUCCESS; }
Status InferTensorMap() override;
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
Status InferMirrorOps() override { return SUCCESS; }
Status InferForwardCommunication() override { return SUCCESS; }
virtual Status InferReplaceOps(const StrategyPtr &strategy) = 0;
};
class DropoutGenMaskInfo : public GeneratorBase {
public:
DropoutGenMaskInfo(const std::string &name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: GeneratorBase(name, inputs_shape, outputs_shape, attrs) {}
~DropoutGenMaskInfo() override = default;
Status GenerateStrategies(int32_t stage_id) override;
std::shared_ptr<std::vector<std::vector<int32_t>>> GenerateBatchStrategies() override;
protected:
Status CheckStrategy(const StrategyPtr &strategy) override;
Status InferReplaceOps(const StrategyPtr &strategy) override;
};
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_GENERATOR_INFO_H_

View File

@ -24,7 +24,6 @@
#include "parallel/ops_info/comparison_function_info.h"
#include "parallel/ops_info/dropout_do_mask_info.h"
#include "parallel/ops_info/elementary_function_info.h"
#include "parallel/ops_info/generator_info.h"
#include "parallel/ops_info/get_next_info.h"
#include "parallel/ops_info/l2_normalize_info.h"
#include "parallel/ops_info/loss_info.h"

View File

@ -34,6 +34,10 @@ constexpr size_t SOFTMAX_ATTR_SIZE = 1;
constexpr size_t ACTIVATION_INPUTS_SIZE = 1;
constexpr size_t ACTIVATION_OUTPUTS_SIZE = 1;
constexpr size_t EXPANDDIMS_INPUT_SIZE = 2;
constexpr size_t DROPOUT_DO_MASK_CNODE_INPUT_SIZE = 4;
constexpr size_t DROPOUT_GEN_MASK_CNODE_INPUT_SIZE = 3;
constexpr size_t DROPOUT_GEN_MASK_INDEX = 2;
constexpr size_t DROPOUT_DO_MASK_KEEP_PROB_INDEX = 3;
constexpr size_t SoftmaxCrossEntropyWithLogitsAttrSize = 1;
constexpr size_t SoftmaxCrossEntropyWithLogitsInputsSize = 2;
constexpr size_t SoftmaxCrossEntropyWithLogitsOutputsSize = 2;

View File

@ -69,7 +69,6 @@ std::vector<std::string> splittable_op_ = {MATMUL,
RELU,
ONEHOT,
DROPOUT_DO_MASK,
DROPOUT_GEN_MASK,
REDUCE_MAX,
REDUCE_MIN,
ARGMAXWITHVALUE,

View File

@ -484,8 +484,6 @@ void StepSplitTensor(const AnfNodePtr& node, const FuncGraphManagerPtr& manager)
}
if (IsParallelCareNode(use_cnode)) {
SplitTensor(node, use_cnode, node_pair.second);
} else {
StepSplitTensor(use_cnode, manager);
}
}
}
@ -525,6 +523,26 @@ std::vector<AnfNodePtr> ReplaceOpInput(const Operator& replace_op, const std::st
return replace_input;
}
void ReplaceOneOp(const Operator& replace_op, const CNodePtr& node) {
FuncGraphPtr func_graph = node->func_graph();
MS_EXCEPTION_IF_NULL(func_graph);
FuncGraphManagerPtr manager = func_graph->manager();
if (manager == nullptr) {
MS_LOG(EXCEPTION) << "Failure:AddNode error since manager is nullptr";
}
std::string instance_name = CreateInstanceName(node, 0);
std::vector<AnfNodePtr> replace_input;
replace_input = ReplaceOpInput(replace_op, instance_name, node);
CNodePtr replace_node = func_graph->NewCNode(replace_input);
MS_EXCEPTION_IF_NULL(replace_node);
ScopePtr scope = node->scope();
MS_EXCEPTION_IF_NULL(scope);
replace_node->set_scope(scope);
replace_node->set_in_forward_flag(true);
replace_input[0]->set_scope(scope);
(void)manager->Replace(node, replace_node);
}
void StepReplaceOp(OperatorVector replace_op, const CNodePtr& node) {
// step1:get graph manager distribute_operator
OperatorInfoPtr distribute_operator = node->operator_info();
@ -1757,6 +1775,28 @@ void StepReplace(const OperatorInfoPtr& distribute_operator, const CNodePtr& cno
}
}
void HandleDropoutNode(const OperatorInfoPtr& distribute_operator, const CNodePtr& cnode) {
MS_EXCEPTION_IF_NULL(distribute_operator);
MS_EXCEPTION_IF_NULL(cnode);
std::string op_name = distribute_operator->name();
if (op_name.find(DROPOUT_DO_MASK) == std::string::npos) {
return;
}
DropoutDoMaskInfoPtr dropout_do_mask = std::dynamic_pointer_cast<DropoutDoMaskInfo>(distribute_operator);
MS_EXCEPTION_IF_NULL(dropout_do_mask);
Operator replace_op = dropout_do_mask->GetDropoutGenMaskReplaceOp(cnode);
if (cnode->inputs().size() != DROPOUT_DO_MASK_CNODE_INPUT_SIZE) {
MS_LOG(EXCEPTION) << "The size of drop out do mask cnode's input is not " << DROPOUT_DO_MASK_CNODE_INPUT_SIZE;
}
ReplaceOneOp(replace_op, cnode->input(DROPOUT_GEN_MASK_INDEX)->cast<CNodePtr>());
}
void HandleSpecialNode(const OperatorInfoPtr& distribute_operator, const CNodePtr& cnode) {
HandleDropoutNode(distribute_operator, cnode);
}
void ParallelCommunication(const FuncGraphPtr& root, const std::vector<AnfNodePtr>& all_nodes,
const FuncGraphManagerPtr& manager) {
MS_EXCEPTION_IF_NULL(root);
@ -1804,6 +1844,8 @@ void ParallelCommunication(const FuncGraphPtr& root, const std::vector<AnfNodePt
// StepReplace
StepReplace(distribute_operator, cnode);
HandleSpecialNode(distribute_operator, cnode);
} else if (IsValueNode<Tensor>(node)) {
StepSplitTensor(node, manager);
}

View File

@ -1,166 +0,0 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <list>
#include <vector>
#include "common/common_test.h"
#include "parallel/strategy.h"
#include "parallel/ops_info/dropout_do_mask_info.h"
#include "parallel/device_manager.h"
#include "parallel/step_parallel.h"
namespace mindspore {
namespace parallel {
class DropoutDoMaskInfo;
using DropoutDoMaskInfoPtr = std::shared_ptr<DropoutDoMaskInfo>;
DropoutDoMaskInfoPtr do_mask;
class TestDropoutDoMaskInfo : public UT::Common {
public:
TestDropoutDoMaskInfo() {}
void SetUp();
void TearDown() {}
};
void TestDropoutDoMaskInfo::SetUp() {
std::vector<int32_t> dev_list;
for (int32_t i = 0; i < 34; i++) {
dev_list.push_back(i);
}
std::vector<int32_t> stage_map;
stage_map.push_back(32);
stage_map.push_back(2);
int32_t local_dev = 0;
// create a new g_device_manager
g_device_manager = std::make_shared<DeviceManager>();
g_device_manager->Init(dev_list, local_dev, stage_map, "hccl");
std::unordered_map<std::string, ValuePtr> attr;
Shapes inputs_shape = {{32, 128}, {64}, {}};
Shapes outputs_shape = {{32, 128}};
do_mask = std::make_shared<DropoutDoMaskInfo>("do_mask_info", inputs_shape, outputs_shape, attr);
}
TEST_F(TestDropoutDoMaskInfo, InferDevMatrixShape) {
std::vector<Dimensions> stra = {{4, 8}};
StrategyPtr strategy = NewStrategy(0, stra);
do_mask->Init(strategy);
std::vector<int32_t> dev_matrix_shape = do_mask->dev_matrix_shape();
std::vector<int32_t> expect = {4, 8};
ASSERT_EQ(dev_matrix_shape, expect);
}
TEST_F(TestDropoutDoMaskInfo, InferSliceShape) {
std::vector<Dimensions> stra = {{4, 8}};
StrategyPtr strategy = NewStrategy(0, stra);
do_mask->Init(strategy);
std::vector<TensorInfo> inputs = do_mask->inputs_tensor_info();
std::vector<TensorInfo> outputs = do_mask->outputs_tensor_info();
Shape input_a_slice_shape_expect = {8, 16};
Shape input_b_slice_shape_expect = {64};
Shape output_slice_shape_expect = {8, 16};
TensorInfo input_a_tensor_info = inputs.at(0);
TensorInfo input_b_tensor_info = inputs.at(1);
TensorInfo output_tensor_info = outputs.at(0);
Shape input_a_slice_shape = input_a_tensor_info.slice_shape();
Shape input_b_slice_shape = input_b_tensor_info.slice_shape();
Shape output_slice_shape = output_tensor_info.slice_shape();
ASSERT_EQ(input_a_slice_shape, input_a_slice_shape_expect);
ASSERT_EQ(input_b_slice_shape, input_b_slice_shape_expect);
ASSERT_EQ(output_slice_shape, output_slice_shape_expect);
}
TEST_F(TestDropoutDoMaskInfo, GetTensorLayout) {
std::vector<Dimensions> stra = {{4, 8}};
StrategyPtr strategy = NewStrategy(0, stra);
do_mask->Init(strategy);
std::vector<TensorInfo> inputs = do_mask->inputs_tensor_info();
std::vector<TensorInfo> outputs = do_mask->outputs_tensor_info();
TensorMap input_a_map_expect = {1, 0};
TensorMap input_b_map_expect = {-1};
TensorMap output_map_expect = {1, 0};
TensorInfo input_a_tensor_info = inputs.at(0);
TensorInfo input_b_tensor_info = inputs.at(1);
TensorInfo output_tensor_info = outputs.at(0);
Map input_a_tensor_map = input_a_tensor_info.tensor_layout().origin_tensor_map();
Map input_b_tensor_map = input_b_tensor_info.tensor_layout().origin_tensor_map();
Map output_tensor_map = output_tensor_info.tensor_layout().origin_tensor_map();
ASSERT_EQ(input_a_tensor_map.array(), input_a_map_expect);
ASSERT_EQ(input_b_tensor_map.array(), input_b_map_expect);
ASSERT_EQ(output_tensor_map.array(), output_map_expect);
}
TEST_F(TestDropoutDoMaskInfo, GetForwardOp) {
std::vector<Dimensions> stra = {{4, 8}};
StrategyPtr strategy = NewStrategy(0, stra);
do_mask->Init(strategy);
OperatorVector forward_op = do_mask->forward_op();
size_t size = forward_op.size();
ASSERT_EQ(size, 0);
}
TEST_F(TestDropoutDoMaskInfo, CheckStrategy1) {
std::vector<Dimensions> stra = {{4, 8, 2}};
StrategyPtr strategy = NewStrategy(0, stra);
Status ret = do_mask->Init(strategy);
ASSERT_EQ(ret, FAILED);
}
TEST_F(TestDropoutDoMaskInfo, CheckStrategy2) {
std::vector<Dimensions> stra = {{8, 8}};
StrategyPtr strategy = NewStrategy(0, stra);
Status ret = do_mask->Init(strategy);
ASSERT_EQ(ret, FAILED);
}
TEST_F(TestDropoutDoMaskInfo, CheckStrategy3) {
std::vector<Dimensions> stra = {{4, 8}, {4, 8}};
StrategyPtr strategy = NewStrategy(0, stra);
Status ret = do_mask->Init(strategy);
ASSERT_EQ(ret, FAILED);
}
TEST_F(TestDropoutDoMaskInfo, CheckStrategy4) {
std::vector<Dimensions> stra = {{4, 8}};
StrategyPtr strategy = NewStrategy(0, stra);
Status ret = do_mask->Init(strategy);
ASSERT_EQ(ret, SUCCESS);
}
} // namespace parallel
} // namespace mindspore

View File

@ -1,137 +0,0 @@
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <list>
#include <vector>
#include "common/common_test.h"
#include "parallel/strategy.h"
#include "parallel/ops_info/generator_info.h"
#include "parallel/device_manager.h"
#include "parallel/step_parallel.h"
namespace mindspore {
namespace parallel {
class DropoutGenMaskInfo;
using DropoutGenMaskInfoPtr = std::shared_ptr<DropoutGenMaskInfo>;
DropoutGenMaskInfoPtr gen_mask;
class TestDropoutGenMaskInfo : public UT::Common {
public:
TestDropoutGenMaskInfo() {}
void SetUp();
void TearDown() {}
};
void TestDropoutGenMaskInfo::SetUp() {
std::vector<int32_t> dev_list;
for (int32_t i = 0; i < 10; i++) {
dev_list.push_back(i);
}
std::vector<int32_t> stage_map;
stage_map.push_back(8);
stage_map.push_back(2);
int32_t local_dev = 0;
// create a new g_device_manager
g_device_manager = std::make_shared<DeviceManager>();
g_device_manager->Init(dev_list, local_dev, stage_map, "hccl");
std::unordered_map<std::string, ValuePtr> attr;
Shapes inputs_shape;
Shapes outputs_shape = {{128}};
std::vector<int> shape = {32, 128};
ValuePtr val0 = MakeValue(shape);
ValuePtr val1;
std::vector<ValuePtr> val = {val0, val1};
gen_mask = std::make_shared<DropoutGenMaskInfo>("gen_mask_info", inputs_shape, outputs_shape, attr);
gen_mask->set_input_value(val);
}
TEST_F(TestDropoutGenMaskInfo, InferDevMatrixShape) {
std::vector<Dimensions> stra = {{8, 1}};
StrategyPtr strategy = NewStrategy(0, stra);
gen_mask->Init(strategy);
std::vector<int32_t> dev_matrix_shape = gen_mask->dev_matrix_shape();
std::vector<int32_t> expect = {8, 1};
ASSERT_EQ(dev_matrix_shape, expect);
}
TEST_F(TestDropoutGenMaskInfo, InferSliceShape) {
std::vector<Dimensions> stra = {{8, 1}};
StrategyPtr strategy = NewStrategy(0, stra);
gen_mask->Init(strategy);
std::vector<TensorInfo> outputs = gen_mask->outputs_tensor_info();
Shape output_slice_shape_expect = {128};
TensorInfo output_tensor_info = outputs.at(0);
Shape output_slice_shape = output_tensor_info.slice_shape();
ASSERT_EQ(output_slice_shape, output_slice_shape_expect);
}
TEST_F(TestDropoutGenMaskInfo, GetTensorLayout) {
std::vector<Dimensions> stra = {{8, 1}};
StrategyPtr strategy = NewStrategy(0, stra);
gen_mask->Init(strategy);
std::vector<TensorInfo> outputs = gen_mask->outputs_tensor_info();
TensorMap output_map_expect = {-1};
TensorInfo output_tensor_info = outputs.at(0);
Map output_tensor_map = output_tensor_info.tensor_layout().origin_tensor_map();
ASSERT_EQ(output_tensor_map.array(), output_map_expect);
}
TEST_F(TestDropoutGenMaskInfo, GetForwardOp) {
std::vector<Dimensions> stra = {{8, 1}};
StrategyPtr strategy = NewStrategy(0, stra);
gen_mask->Init(strategy);
OperatorVector forward_op = gen_mask->forward_op();
size_t size = forward_op.size();
ASSERT_EQ(size, 0);
}
TEST_F(TestDropoutGenMaskInfo, CheckStrategy1) {
std::vector<Dimensions> stra = {{4, 8, 2}, {2, 3}};
StrategyPtr strategy = NewStrategy(0, stra);
Status ret = gen_mask->Init(strategy);
ASSERT_EQ(ret, FAILED);
}
TEST_F(TestDropoutGenMaskInfo, CheckStrategy2) {
std::vector<Dimensions> stra = {{8, 1}};
StrategyPtr strategy = NewStrategy(0, stra);
Status ret = gen_mask->Init(strategy);
ASSERT_EQ(ret, SUCCESS);
}
} // namespace parallel
} // namespace mindspore

View File

@ -0,0 +1,94 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, TrainOneStepCell, Momentum
from mindspore.ops import operations as P
from mindspore.common.api import _executor
class Net(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().set_strategy(strategy1)
self.mul2 = P.Mul().set_strategy(strategy1)
self.dropout_do_mask = P.DropoutDoMask().set_strategy(strategy2)
self.dropout_gen_mask = P.DropoutGenMask()
self.get_shape = P.Shape()
self.cast = P.Cast()
self.mul_weight = Parameter(mul_weight, "w1")
self.mul_weight2 = Parameter(mul_weight, "w2")
self.keep_prob = Tensor(0.9)
def construct(self, x, b):
out = self.mul(x, self.mul_weight)
shape = self.get_shape(out)
dtype = P.DType()(out)
keep_prob = self.cast(self.keep_prob, dtype)
mask = self.dropout_gen_mask(shape, keep_prob)
out = self.dropout_do_mask(out, mask, keep_prob)
out = self.mul2(out, self.mul_weight2)
return out
_x = Tensor(np.ones([128, 64]), dtype=ms.float32)
_w1 = Tensor(np.ones([128, 64]), dtype=ms.float32)
_b = Tensor(np.ones([128, 64]), dtype=ms.float32)
def compile(net):
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
_executor.compile(train_net, _x, _b)
context.reset_auto_parallel_context()
def test_dropout_do_mask_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((16, 1), (16, 1))
strategy2 = ((16, 1),)
net = Net(_w1, strategy1, strategy2)
compile(net)
def test_dropout_do_mask_model_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((1, 16), (1, 16))
strategy2 = ((1, 16),)
net = Net(_w1, strategy1, strategy2)
compile(net)
def test_dropout_do_mask_hybrid_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 4), (4, 4))
strategy2 = ((4, 4),)
net = Net(_w1, strategy1, strategy2)
compile(net)
def test_dropout_do_mask_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Net(_w1)
compile(net)
def test_dropout_do_mask_repeat_calc():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 4), (4, 4))
strategy2 = ((2, 4),)
net = Net(_w1, strategy1, strategy2)
compile(net)