forked from mindspore-Ecosystem/mindspore
support pretrain for maskrcnn
This commit is contained in:
parent
22927dc4f7
commit
512900c5f3
|
@ -35,7 +35,7 @@ MaskRcnn is a two-stage target detection network,This network uses a region prop
|
|||
└─train2017
|
||||
|
||||
```
|
||||
|
||||
Notice that the coco2017 dataset will be converted to MindRecord which is a data format in MindSpore. The dataset conversion may take about 4 hours.
|
||||
2. If your own dataset is used. **Select dataset to other when run script.**
|
||||
Organize the dataset infomation into a TXT file, each row in the file is as follows:
|
||||
|
||||
|
|
|
@ -134,6 +134,7 @@ config = ed({
|
|||
"loss_scale": 1,
|
||||
"momentum": 0.91,
|
||||
"weight_decay": 1e-4,
|
||||
"pretrain_epoch_size": 0,
|
||||
"epoch_size": 12,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
|
|
|
@ -25,7 +25,7 @@ def a_cosine_learning_rate(current_step, base_lr, warmup_steps, decay_steps):
|
|||
learning_rate = (1 + math.cos(base * math.pi)) / 2 * base_lr
|
||||
return learning_rate
|
||||
|
||||
def dynamic_lr(config, rank_size=1):
|
||||
def dynamic_lr(config, rank_size=1, start_steps=0):
|
||||
"""dynamic learning rate generator"""
|
||||
base_lr = config.base_lr
|
||||
|
||||
|
@ -38,5 +38,5 @@ def dynamic_lr(config, rank_size=1):
|
|||
lr.append(linear_warmup_learning_rate(i, warmup_steps, base_lr, base_lr * config.warmup_ratio))
|
||||
else:
|
||||
lr.append(a_cosine_learning_rate(i, base_lr, warmup_steps, total_steps))
|
||||
|
||||
return lr
|
||||
learning_rate = lr[start_steps:]
|
||||
return learning_rate
|
||||
|
|
|
@ -108,13 +108,15 @@ if __name__ == '__main__':
|
|||
load_path = args_opt.pre_trained
|
||||
if load_path != "":
|
||||
param_dict = load_checkpoint(load_path)
|
||||
for item in list(param_dict.keys()):
|
||||
if not (item.startswith('backbone') or item.startswith('rcnn_mask')):
|
||||
param_dict.pop(item)
|
||||
if config.pretrain_epoch_size == 0:
|
||||
for item in list(param_dict.keys()):
|
||||
if not (item.startswith('backbone') or item.startswith('rcnn_mask')):
|
||||
param_dict.pop(item)
|
||||
load_param_into_net(net, param_dict)
|
||||
|
||||
loss = LossNet()
|
||||
lr = Tensor(dynamic_lr(config, rank_size=device_num), mstype.float32)
|
||||
lr = Tensor(dynamic_lr(config, rank_size=device_num, start_steps=config.pretrain_epoch_size * dataset_size),
|
||||
mstype.float32)
|
||||
opt = SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
|
||||
weight_decay=config.weight_decay, loss_scale=config.loss_scale)
|
||||
|
||||
|
|
Loading…
Reference in New Issue