forked from mindspore-Ecosystem/mindspore
move deeplabv3 and resnext50 from model_zoo to model_zoo/official/cv
This commit is contained in:
parent
b13c7a3d48
commit
4f9b79f5d1
|
@ -1,11 +1,16 @@
|
|||
# Deeplab-V3 Example
|
||||
# DeeplabV3 Example
|
||||
|
||||
## Description
|
||||
This is an example of training DeepLabv3 with PASCAL VOC 2012 dataset in MindSpore.
|
||||
This is an example of training DeepLabV3 with PASCAL VOC 2012 dataset in MindSpore.
|
||||
|
||||
## Requirements
|
||||
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||
- Download the VOC 2012 dataset for training.
|
||||
- We need to run `./src/remove_gt_colormap.py` to remove the label colormap.
|
||||
``` bash
|
||||
python remove_gt_colormap.py --original_gt_folder GT_FOLDER --output_dir OUTPUT_DIR
|
||||
|
||||
```
|
||||
|
||||
> Notes:
|
||||
If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file.
|
||||
|
@ -30,7 +35,7 @@ Set options in evaluation_config.py. Make sure the 'data_file' and 'finetune_ckp
|
|||
```
|
||||
|
||||
## Options and Parameters
|
||||
It contains of parameters of Deeplab-V3 model and options for training, which is set in file config.py.
|
||||
It contains of parameters of DeeplabV3 model and options for training, which is set in file config.py.
|
||||
|
||||
### Options:
|
||||
```
|
|
@ -0,0 +1,76 @@
|
|||
# Copyright 2020 The Huawei Authors All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
|
||||
"""Removes the color map from segmentation annotations.
|
||||
Removes the color map from the ground truth segmentation annotations and save
|
||||
the results to output_dir.
|
||||
"""
|
||||
import glob
|
||||
import argparse
|
||||
import os.path
|
||||
import numpy as np
|
||||
|
||||
|
||||
from PIL import Image
|
||||
|
||||
|
||||
def _remove_colormap(filename):
|
||||
"""Removes the color map from the annotation.
|
||||
Args:
|
||||
filename: Ground truth annotation filename.
|
||||
Returns:
|
||||
Annotation without color map.
|
||||
"""
|
||||
return np.array(Image.open(filename))
|
||||
|
||||
|
||||
def _save_annotation(annotation, filename):
|
||||
"""Saves the annotation as png file.
|
||||
Args:
|
||||
annotation: Segmentation annotation.
|
||||
filename: Output filename.
|
||||
"""
|
||||
pil_image = Image.fromarray(annotation.astype(dtype=np.uint8))
|
||||
pil_image.save(filename, 'PNG')
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Demo of argparse")
|
||||
parser.add_argument('--original_gt_folder', type=str, default='./VOCdevkit/VOC2012/SegmentationClass',
|
||||
help='Original ground truth annotations.')
|
||||
parser.add_argument('--segmentation_format', type=str, default='png',
|
||||
help='Segmentation format.')
|
||||
parser.add_argument('--output_dir', type=str, default='./VOCdevkit/VOC2012/SegmentationClassRaw',
|
||||
help='folder to save modified ground truth annotations.')
|
||||
args = parser.parse_args()
|
||||
|
||||
# Create the output directory if not exists.
|
||||
|
||||
if not os.path.isdir(args.output_dir):
|
||||
os.mkdir(args.output_dir)
|
||||
|
||||
annotations = glob.glob(os.path.join(args.original_gt_folder,
|
||||
'*.' + args.segmentation_format))
|
||||
|
||||
for annotation in annotations:
|
||||
raw_annotation = _remove_colormap(annotation)
|
||||
filename = os.path.basename(annotation)[:-4]
|
||||
_save_annotation(raw_annotation,
|
||||
os.path.join(
|
||||
args.output_dir,
|
||||
filename + '.' + args.segmentation_format))
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
|
@ -2,12 +2,12 @@
|
|||
|
||||
## Description
|
||||
|
||||
This is an example of training ResNext50 with ImageNet dataset in Mindspore.
|
||||
This is an example of training ResNext50 in MindSpore.
|
||||
|
||||
## Requirements
|
||||
|
||||
- Install [Mindspore](http://www.mindspore.cn/install/en).
|
||||
- Downlaod the dataset ImageNet2012.
|
||||
- Downlaod the dataset.
|
||||
|
||||
## Structure
|
||||
|
||||
|
@ -91,9 +91,9 @@ sh run_standalone_train.sh DEVICE_ID DATA_PATH
|
|||
|
||||
```bash
|
||||
# distributed training example(8p)
|
||||
sh scripts/run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH /ImageNet/train
|
||||
sh scripts/run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH /dataset/train
|
||||
# standalone training example
|
||||
sh scripts/run_standalone_train.sh 0 /ImageNet_Original/train
|
||||
sh scripts/run_standalone_train.sh 0 /dataset/train
|
||||
```
|
||||
|
||||
#### Result
|
||||
|
@ -123,6 +123,6 @@ sh scripts/run_eval.sh 0 /opt/npu/datasets/classification/val /resnext50_100.ckp
|
|||
Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log.
|
||||
|
||||
```
|
||||
acc=78,16%(TOP1)
|
||||
acc=78.16%(TOP1)
|
||||
acc=93.88%(TOP5)
|
||||
```
|
Loading…
Reference in New Issue