!10829 Modify Split Kernel for CPU

From: @shaoxiangdong
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2021-01-04 15:31:15 +08:00 committed by Gitee
commit 4ceb9e633c
3 changed files with 269 additions and 95 deletions

View File

@ -13,111 +13,105 @@
* See the License for the specific language governing permissions and * See the License for the specific language governing permissions and
* limitations under the License. * limitations under the License.
*/ */
#include "backend/kernel_compiler/cpu/split_cpu_kernel.h" #include "backend/kernel_compiler/cpu/split_cpu_kernel.h"
#include "runtime/device/cpu/cpu_device_address.h" #include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore { namespace mindspore {
namespace kernel { namespace kernel {
void SplitCPUKernel::InitKernel(const CNodePtr &kernel_node) { template <typename T>
CheckParam(kernel_node); void SplitCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
axis_ = AnfAlgo::GetNodeAttr<int64_t>(kernel_node, "axis");
axis_ = AnfAlgo::GetNodeAttr<int64_t>(kernel_node, AXIS); output_num_ = AnfAlgo::GetNodeAttr<int64_t>(kernel_node, "output_num");
auto output_1_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
if (axis_ < 0) {
axis_ = axis_ + SizeToLong(output_1_shape.size());
}
axis_ += 4 - SizeToLong(output_1_shape.size());
auto output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
for (size_t i = 0; i < output_num; i++) {
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, i);
CPUKernelUtils::ExpandDimsTo4(&output_shape);
output_shape_list_.push_back(output_shape);
}
input_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); input_shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
CPUKernelUtils::ExpandDimsTo4(&input_shape_); CheckParam(kernel_node);
Reshape();
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
} }
bool SplitCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, template <typename T>
const std::vector<kernel::AddressPtr> & /*workspace*/, void SplitCPUKernel<T>::Reshape() {
const std::vector<kernel::AddressPtr> &outputs) { input_size_ = 1;
if (dtype_ == kNumberTypeInt32 || dtype_ == kNumberTypeInt) { dims_current_after_axis_ = 1;
return LaunchKernel<int32_t>(inputs, outputs); dims_after_axis_ = 1;
} else if (dtype_ == kNumberTypeInt64) { axis_step_ = input_shape_[axis_] / output_num_;
return LaunchKernel<int64_t>(inputs, outputs);
} else if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat) { for (int i = 0; i < SizeToInt(input_shape_.size()); i++) {
return LaunchKernel<float>(inputs, outputs); input_size_ *= input_shape_[i];
} else if (dtype_ == kNumberTypeFloat64) { if (i > axis_) {
return LaunchKernel<double>(inputs, outputs); dims_current_after_axis_ *= input_shape_[i];
} else { dims_after_axis_ *= input_shape_[i];
MS_LOG(EXCEPTION) << "Only support int, float, but actual data type is " << TypeIdLabel(dtype_); }
if (i == axis_) {
dims_current_after_axis_ *= input_shape_[i];
}
} }
} }
template <typename T> template <typename T>
bool SplitCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) { void SplitCPUKernel<T>::InitInputOutputSize(const CNodePtr &kernel_node) {
auto input_addr = reinterpret_cast<T *>(inputs[0]->addr); CPUKernel::InitInputOutputSize(kernel_node);
auto buff_size = inputs[0]->size; workspace_size_list_.emplace_back((sizeof(T *) * output_num_));
size_t dim0 = input_shape_[0]; }
size_t dim1 = input_shape_[1];
size_t dim2 = input_shape_[2];
if (axis_ == 3) { template <typename T>
for (size_t i = 0; i < dim0; ++i) { bool SplitCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
for (size_t j = 0; j < dim1; ++j) { const std::vector<kernel::AddressPtr> &workspace,
for (size_t k = 0; k < dim2; ++k) { const std::vector<kernel::AddressPtr> &outputs) {
CopyDataToOutput(outputs, i, j, k, &input_addr, &buff_size); LaunchKernel(inputs, workspace, outputs);
}
}
}
} else if (axis_ == 2) {
for (size_t i = 0; i < dim0; ++i) {
for (size_t j = 0; j < dim1; ++j) {
CopyDataToOutput(outputs, i, j, 0, &input_addr, &buff_size);
}
}
} else if (axis_ == 1) {
for (size_t i = 0; i < dim0; ++i) {
CopyDataToOutput(outputs, i, 0, 0, &input_addr, &buff_size);
}
} else if (axis_ == 0) {
CopyDataToOutput(outputs, 0, 0, 0, &input_addr, &buff_size);
}
return true; return true;
} }
template <typename T> template <typename T>
void SplitCPUKernel::CopyDataToOutput(const std::vector<kernel::AddressPtr> &outputs, size_t dim0, size_t dim1, void SplitCPUKernel<T>::LaunchSplit(const T *input, T **output, size_t size) {
size_t dim2, T **input_addr, size_t *buff_size) { auto task = [&](size_t start, size_t end) {
for (size_t i = 0; i < output_shape_list_.size(); ++i) { for (size_t i = start; i < end; i++) {
auto output_i_shape = output_shape_list_[i]; int num = i % dims_current_after_axis_ / dims_after_axis_;
auto output_i_addr = reinterpret_cast<float *>(outputs[i]->addr); int block = num / axis_step_;
int block_pos = i / dims_current_after_axis_ * axis_step_ * dims_after_axis_ +
size_t num = CPUKernelUtils::GetElementNumOnAxis(output_i_shape, axis_); num % axis_step_ * dims_after_axis_ + i % dims_after_axis_;
num *= output_i_shape[axis_]; output[block][block_pos] = input[i];
auto pos = CPUKernelUtils::CalcOffset(output_i_shape, dim0, dim1, dim2, 0);
auto ret = memcpy_s(output_i_addr + pos, *buff_size, *input_addr, num * sizeof(T));
if (ret != EOK) {
MS_LOG(EXCEPTION) << "memcpy failed.";
} }
*input_addr += num; };
*buff_size -= num * sizeof(T); CPUKernelUtils::ParallelFor(task, size);
} return;
} }
void SplitCPUKernel::CheckParam(const CNodePtr &kernel_node) { template <typename T>
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); void SplitCPUKernel<T>::LaunchKernel(const std::vector<AddressPtr> &inputs,
if (output_shape.size() > 4) { const std::vector<kernel::AddressPtr> &workspace,
MS_LOG(EXCEPTION) << "Output dims is " << output_shape.size() << ", but SplitCPUKernel only support 4d or lower."; const std::vector<AddressPtr> &outputs) {
T *input = reinterpret_cast<T *>(inputs[0]->addr);
T **output = reinterpret_cast<T **>(workspace[0]->addr);
for (size_t i = 0; i < outputs.size(); i++) {
output[i] = reinterpret_cast<T *>(outputs[i]->addr);
} }
size_t size = static_cast<size_t>(inputs[0]->size / sizeof(T));
LaunchSplit(input, output, size);
return;
}
template <typename T>
void SplitCPUKernel<T>::CheckParam(const CNodePtr &kernel_node) {
auto input_num = AnfAlgo::GetInputTensorNum(kernel_node);
int64_t dims = SizeToLong(input_shape_.size());
int64_t output_num = SizeToLong(AnfAlgo::GetOutputTensorNum(kernel_node));
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 1) { if (input_num != 1) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but SplitCPUKernel needs 1 input."; MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but Split needs 1 input.";
}
if (dims == 0) {
MS_LOG(EXCEPTION) << "Input dims is " << dims << ", scalar is not supported.";
}
if (axis_ < -dims || axis_ >= dims) {
MS_LOG(EXCEPTION) << "Attr axis_ " << axis_ << " must be in " << -dims << "~" << dims;
}
if (axis_ < 0) {
axis_ += SizeToInt(input_shape_.size());
}
if (output_num_ > SizeToInt(input_shape_[axis_])) {
MS_LOG(EXCEPTION) << "Attr output_num " << output_num_ << " must less than " << input_shape_[axis_];
}
if (output_num_ != output_num) {
MS_LOG(EXCEPTION) << "Output num is " << output_num << ", but need " << output_num_;
} }
} }
} // namespace kernel } // namespace kernel

View File

@ -17,14 +17,16 @@
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPLIT_CPU_KERNEL_H_ #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPLIT_CPU_KERNEL_H_
#include <vector> #include <vector>
#include <memory> #include <memory>
#include <thread>
#include "backend/kernel_compiler/cpu/cpu_kernel.h" #include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore { namespace mindspore {
namespace kernel { namespace kernel {
template <typename T>
class SplitCPUKernel : public CPUKernel { class SplitCPUKernel : public CPUKernel {
public: public:
SplitCPUKernel() : axis_(0) {} SplitCPUKernel() = default;
~SplitCPUKernel() override = default; ~SplitCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override; void InitKernel(const CNodePtr &kernel_node) override;
@ -32,26 +34,46 @@ class SplitCPUKernel : public CPUKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override; const std::vector<AddressPtr> &outputs) override;
template <typename T> void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
bool LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); const std::vector<AddressPtr> &outputs);
void InitInputOutputSize(const CNodePtr &kernel_node) override;
private: private:
static void CheckParam(const CNodePtr &kernel_node); void CheckParam(const CNodePtr &kernel_node);
template <typename T> void Reshape();
void CopyDataToOutput(const std::vector<kernel::AddressPtr> &inputs, size_t dim0, size_t dim1, size_t dim2, void LaunchSplit(const T *input, T **output, size_t size);
T **output_addr, size_t *buff_size);
int64_t axis_; int64_t axis_;
int64_t output_num_;
int64_t axis_step_;
size_t input_size_;
size_t dims_after_axis_;
size_t dims_current_after_axis_;
std::vector<std::vector<size_t>> output_shape_list_; std::vector<std::vector<size_t>> output_shape_list_;
std::vector<size_t> input_shape_; std::vector<size_t> input_shape_;
TypeId dtype_{kTypeUnknown}; TypeId dtype_{kTypeUnknown};
}; };
MS_REG_CPU_KERNEL(Split, MS_REG_CPU_KERNEL_T(
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), Split, KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
SplitCPUKernel); SplitCPUKernel, float);
MS_REG_CPU_KERNEL(Split, MS_REG_CPU_KERNEL_T(
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), Split, KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
SplitCPUKernel); SplitCPUKernel, float16);
MS_REG_CPU_KERNEL_T(
Split, KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
SplitCPUKernel, double);
MS_REG_CPU_KERNEL_T(Split,
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
SplitCPUKernel, int32_t);
MS_REG_CPU_KERNEL_T(Split,
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeUInt32).AddOutputAttr(kNumberTypeUInt32),
SplitCPUKernel, uint32_t);
MS_REG_CPU_KERNEL_T(Split,
KernelAttr().SetAllSameAttr(true).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
SplitCPUKernel, int64_t);
} // namespace kernel } // namespace kernel
} // namespace mindspore } // namespace mindspore

View File

@ -80,6 +80,164 @@ def test_out2_axis1neg():
assert np.allclose(outputs[1].asnumpy()[0, :, :], [[3., 4., 5.], [9., 10., 11.]]) assert np.allclose(outputs[1].asnumpy()[0, :, :], [[3., 4., 5.], [9., 10., 11.]])
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_out_float32():
op = P.Split(5, 2)
op_wrapper = OpNetWrapper(op)
input_x = Tensor(np.arange(192).astype(np.float32).reshape((2, 2, 2, 2, 2, 6)))
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2.])
assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3., 4., 5.])
op = P.Split(5, 3)
op_wrapper = OpNetWrapper(op)
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.])
assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.])
assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.])
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_out_float64():
op = P.Split(5, 2)
op_wrapper = OpNetWrapper(op)
input_x = Tensor(np.arange(192).astype(np.float64).reshape((2, 2, 2, 2, 2, 6)))
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2.])
assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3., 4., 5.])
op = P.Split(5, 3)
op_wrapper = OpNetWrapper(op)
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.])
assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.])
assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.])
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_out_float16():
op = P.Split(-1, 2)
op_wrapper = OpNetWrapper(op)
input_x = Tensor(np.arange(320).astype(np.float16).reshape((2, 2, 2, 2, 2, 10)))
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1., 2., 3., 4.])
assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [5., 6., 7., 8., 9.])
op = P.Split(-1, 5)
op_wrapper = OpNetWrapper(op)
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0., 1.])
assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [2., 3.])
assert np.allclose(outputs[2].asnumpy()[0, 0, 0, 0, 0, :], [4., 5.])
assert np.allclose(outputs[3].asnumpy()[0, 0, 0, 0, 0, :], [6., 7.])
assert np.allclose(outputs[4].asnumpy()[0, 0, 0, 0, 0, :], [8., 9.])
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_out_int32():
op = P.Split(5, 2)
op_wrapper = OpNetWrapper(op)
input_x = Tensor(np.arange(192).astype(np.int32).reshape((2, 2, 2, 2, 2, 6)))
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2])
assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3, 4, 5])
op = P.Split(5, 3)
op_wrapper = OpNetWrapper(op)
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, 0, :], [96, 97])
assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, 0, :], [98, 99])
assert np.allclose(outputs[2].asnumpy()[1, 0, 0, 0, 0, :], [100, 101])
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_out_int64():
op = P.Split(5, 2)
op_wrapper = OpNetWrapper(op)
input_x = Tensor(np.arange(192).astype(np.int64).reshape((2, 2, 2, 2, 2, 6)))
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2])
assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [3, 4, 5])
op = P.Split(5, 3)
op_wrapper = OpNetWrapper(op)
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, 0, :], [96, 97])
assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, 0, :], [98, 99])
assert np.allclose(outputs[2].asnumpy()[1, 0, 0, 0, 0, :], [100, 101])
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_out_uint32():
op = P.Split(-1, 2)
op_wrapper = OpNetWrapper(op)
input_x = Tensor(np.arange(320).astype(np.uint32).reshape((2, 2, 2, 2, 2, 10)))
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, 0, :], [0, 1, 2, 3, 4])
assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, 0, :], [5, 6, 7, 8, 9])
op = P.Split(-1, 5)
op_wrapper = OpNetWrapper(op)
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 1, 1, :], [310, 311])
assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 1, 1, :], [312, 313])
assert np.allclose(outputs[2].asnumpy()[1, 1, 1, 1, 1, :], [314, 315])
assert np.allclose(outputs[3].asnumpy()[1, 1, 1, 1, 1, :], [316, 317])
assert np.allclose(outputs[4].asnumpy()[1, 1, 1, 1, 1, :], [318, 319])
op = P.Split(-2, 2)
op_wrapper = OpNetWrapper(op)
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy()[0, 0, 0, 0, :, 0], [0])
assert np.allclose(outputs[1].asnumpy()[0, 0, 0, 0, :, 1], [11])
assert np.allclose(outputs[0].asnumpy()[1, 0, 0, 0, :, 2], [162])
assert np.allclose(outputs[1].asnumpy()[1, 0, 0, 0, :, 3], [173])
assert np.allclose(outputs[0].asnumpy()[1, 1, 0, 0, :, 4], [244])
assert np.allclose(outputs[1].asnumpy()[1, 1, 0, 0, :, 5], [255])
assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 0, :, 6], [286])
assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 0, :, 7], [297])
assert np.allclose(outputs[0].asnumpy()[1, 1, 1, 1, :, 8], [308])
assert np.allclose(outputs[1].asnumpy()[1, 1, 1, 1, :, 9], [319])
op = P.Split(-1, 1)
op_wrapper = OpNetWrapper(op)
input_x = Tensor(np.arange(1).astype(np.uint32))
outputs = op_wrapper(input_x)
assert np.allclose(outputs[0].asnumpy(), [0])
if __name__ == '__main__': if __name__ == '__main__':
test_out1_axis0() test_out1_axis0()
test_out2_axis2() test_out2_axis2()