add float64 support to matmul ops

This commit is contained in:
TFBunny 2021-02-17 12:35:55 -05:00
parent ced5575387
commit 4c18e0894e
5 changed files with 108 additions and 23 deletions

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2019 Huawei Technologies Co., Ltd * Copyright 2019-2021 Huawei Technologies Co., Ltd
* *
* Licensed under the Apache License, Version 2.0 (the "License"); * Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License. * you may not use this file except in compliance with the License.
@ -49,8 +49,8 @@ static std::map<std::string, cudnnDataType_t> kCudnnDtypeMap = {
{"kNumberTypeBool", CUDNN_DATA_INT8}, {"kNumberTypeInt8", CUDNN_DATA_INT8}, {"kNumberTypeBool", CUDNN_DATA_INT8}, {"kNumberTypeInt8", CUDNN_DATA_INT8},
{"kNumberTypeUInt8", CUDNN_DATA_UINT8}}; {"kNumberTypeUInt8", CUDNN_DATA_UINT8}};
// Used by mixprecision, cuda dtype select // Used by mixprecision, cuda dtype select
static std::map<std::string, cudaDataType_t> kCudaDtypeMap = {{"kNumberTypeFloat32", CUDA_R_32F}, static std::map<std::string, cudaDataType_t> kCudaDtypeMap = {
{"kNumberTypeFloat16", CUDA_R_16F}}; {"kNumberTypeFloat64", CUDA_R_64F}, {"kNumberTypeFloat32", CUDA_R_32F}, {"kNumberTypeFloat16", CUDA_R_16F}};
} // namespace kernel } // namespace kernel
} // namespace mindspore } // namespace mindspore

View File

@ -1,5 +1,5 @@
/** /**
* Copyright 2019 Huawei Technologies Co., Ltd * Copyright 2019-2021 Huawei Technologies Co., Ltd
* *
* Licensed under the Apache License, Version 2.0 (the "License"); * Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License. * you may not use this file except in compliance with the License.
@ -18,6 +18,10 @@
namespace mindspore { namespace mindspore {
namespace kernel { namespace kernel {
MS_REG_GPU_KERNEL_ONE(
MatMul,
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
MatMulGpuKernel, double)
MS_REG_GPU_KERNEL_ONE( MS_REG_GPU_KERNEL_ONE(
MatMul, MatMul,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
@ -26,6 +30,10 @@ MS_REG_GPU_KERNEL_ONE(
MatMul, MatMul,
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
MatMulGpuKernel, half) MatMulGpuKernel, half)
MS_REG_GPU_KERNEL_ONE(
BatchMatMul,
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeFloat64).AddOutputAttr(kNumberTypeFloat64),
MatMulGpuKernel, double)
MS_REG_GPU_KERNEL_ONE( MS_REG_GPU_KERNEL_ONE(
BatchMatMul, BatchMatMul,
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),

View File

@ -14,8 +14,8 @@
* limitations under the License. * limitations under the License.
*/ */
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MATH_MATMUL_GPU_KERNEL_H #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MATH_MATMUL_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MATH_MATMUL_GPU_KERNEL_H #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MATH_MATMUL_GPU_KERNEL_H_
#include <cublas_v2.h> #include <cublas_v2.h>
#include <cuda_runtime_api.h> #include <cuda_runtime_api.h>
@ -47,8 +47,10 @@ class MatMulGpuKernel : public GpuKernel {
auto input2_addr = GetDeviceAddress<T>(inputs, 1); auto input2_addr = GetDeviceAddress<T>(inputs, 1);
auto output_addr = GetDeviceAddress<T>(outputs, 0); auto output_addr = GetDeviceAddress<T>(outputs, 0);
const float alpha = 1; T alpha = static_cast<T>(1.0f);
const float beta = 0; T beta = static_cast<T>(0.0f);
cudaDataType_t compute_type = (dtype_a_ == CUDA_R_64F) ? CUDA_R_64F : CUDA_R_32F;
const int lda = (transpose_x1_ == CUBLAS_OP_T) ? SizeToInt(m_) : SizeToInt(k_); const int lda = (transpose_x1_ == CUBLAS_OP_T) ? SizeToInt(m_) : SizeToInt(k_);
const int ldb = (transpose_x2_ == CUBLAS_OP_T) ? SizeToInt(k_) : SizeToInt(n_); const int ldb = (transpose_x2_ == CUBLAS_OP_T) ? SizeToInt(k_) : SizeToInt(n_);
const int ldc = n_; const int ldc = n_;
@ -58,20 +60,44 @@ class MatMulGpuKernel : public GpuKernel {
auto stride_c = SizeToInt(m_ * n_); auto stride_c = SizeToInt(m_ * n_);
try { try {
if (dtype_a_ == CUDA_R_16F) {
const float alphaf = 1.0f;
const float betaf = 0.0f;
// Use cublasGemmEx to get high performance when batch_ is 1 // Use cublasGemmEx to get high performance when batch_ is 1
if (batch_ == 1) { if (batch_ == 1) {
CHECK_CUBLAS_RET_WITH_EXCEPT(kernel_node_, CHECK_CUBLAS_RET_WITH_EXCEPT(
cublasGemmEx(handle_, transpose_x2_, transpose_x1_, SizeToInt(n_), SizeToInt(m_), kernel_node_,
SizeToInt(k_), &alpha, input2_addr, dtype_b_, ldb, input1_addr, cublasGemmEx(handle_, transpose_x2_, transpose_x1_, SizeToInt(n_), SizeToInt(m_), SizeToInt(k_), &alphaf,
dtype_a_, lda, &beta, output_addr, dtype_c_, ldc, CUDA_R_32F, algo_), input2_addr, dtype_b_, ldb, input1_addr, dtype_a_, lda, &betaf, output_addr, dtype_c_, ldc,
"cublasSgemm Call Fail"); compute_type, algo_),
"cublasGemmEx failed");
} else { } else {
CHECK_CUBLAS_RET_WITH_EXCEPT( CHECK_CUBLAS_RET_WITH_EXCEPT(
kernel_node_, kernel_node_,
cublasGemmStridedBatchedEx(handle_, transpose_x2_, transpose_x1_, SizeToInt(n_), SizeToInt(m_), SizeToInt(k_), cublasGemmStridedBatchedEx(handle_, transpose_x2_, transpose_x1_, SizeToInt(n_), SizeToInt(m_),
&alpha, input2_addr, dtype_b_, ldb, stride_b, input1_addr, dtype_a_, lda, stride_a, SizeToInt(k_), &alphaf, input2_addr, dtype_b_, ldb, stride_b, input1_addr,
&beta, output_addr, dtype_c_, ldc, stride_c, batch_, CUDA_R_32F, algo_), dtype_a_, lda, stride_a, &betaf, output_addr, dtype_c_, ldc, stride_c, batch_,
"cublasGemmStridedBatchedEx Call Fail"); compute_type, algo_),
"cublasGemmStridedBatchedEx failed");
}
} else {
// Use cublasGemmEx to get high performance when batch_ is 1
if (batch_ == 1) {
CHECK_CUBLAS_RET_WITH_EXCEPT(
kernel_node_,
cublasGemmEx(handle_, transpose_x2_, transpose_x1_, SizeToInt(n_), SizeToInt(m_), SizeToInt(k_), &alpha,
input2_addr, dtype_b_, ldb, input1_addr, dtype_a_, lda, &beta, output_addr, dtype_c_, ldc,
compute_type, algo_),
"cublasGemmEx failed");
} else {
CHECK_CUBLAS_RET_WITH_EXCEPT(
kernel_node_,
cublasGemmStridedBatchedEx(handle_, transpose_x2_, transpose_x1_, SizeToInt(n_), SizeToInt(m_),
SizeToInt(k_), &alpha, input2_addr, dtype_b_, ldb, stride_b, input1_addr,
dtype_a_, lda, stride_a, &beta, output_addr, dtype_c_, ldc, stride_c, batch_,
compute_type, algo_),
"cublasGemmStridedBatchedEx failed");
}
} }
} catch (const std::exception &e) { } catch (const std::exception &e) {
MS_LOG(EXCEPTION) << "Encountered an exception: " << e.what() << " when invoke cublas " MS_LOG(EXCEPTION) << "Encountered an exception: " << e.what() << " when invoke cublas "
@ -85,6 +111,10 @@ class MatMulGpuKernel : public GpuKernel {
dtype_a_ = GetCudaDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0))); dtype_a_ = GetCudaDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 0)));
dtype_b_ = GetCudaDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 1))); dtype_b_ = GetCudaDataType(TypeIdLabel(AnfAlgo::GetInputDeviceDataType(kernel_node, 1)));
dtype_c_ = GetCudaDataType(TypeIdLabel(AnfAlgo::GetOutputDeviceDataType(kernel_node, 0))); dtype_c_ = GetCudaDataType(TypeIdLabel(AnfAlgo::GetOutputDeviceDataType(kernel_node, 0)));
auto node_name = AnfAlgo::GetCNodeName(kernel_node);
if (dtype_a_ != dtype_b_ || dtype_a_ != dtype_c_) {
MS_LOG(EXCEPTION) << "input and output types are not the same in " << node_name;
}
if (dtype_a_ == CUDA_R_16F && dtype_b_ == CUDA_R_16F && dtype_c_ == CUDA_R_16F) { if (dtype_a_ == CUDA_R_16F && dtype_b_ == CUDA_R_16F && dtype_c_ == CUDA_R_16F) {
MS_LOG(INFO) << "input and output type is float16, allow to use Tensor Core operations if possible"; MS_LOG(INFO) << "input and output type is float16, allow to use Tensor Core operations if possible";
algo_ = CUBLAS_GEMM_DEFAULT_TENSOR_OP; algo_ = CUBLAS_GEMM_DEFAULT_TENSOR_OP;
@ -174,4 +204,4 @@ class MatMulGpuKernel : public GpuKernel {
} // namespace kernel } // namespace kernel
} // namespace mindspore } // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MATH_MATMUL_GPU_KERNEL_H #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_MATH_MATMUL_GPU_KERNEL_H_

View File

@ -1,4 +1,4 @@
# Copyright 2020 Huawei Technologies Co., Ltd # Copyright 2020-2021 Huawei Technologies Co., Ltd
# #
# Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. # you may not use this file except in compliance with the License.
@ -54,6 +54,28 @@ def test_4d():
assert (output.asnumpy() == expect).all() assert (output.asnumpy() == expect).all()
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_4d_float64():
input_x = Tensor(np.arange(2 * 4 * 1 * 3).reshape(2, 4, 1, 3), mstype.float64)
input_y = Tensor(np.arange(2 * 4 * 3 * 4).reshape(2, 4, 3, 4), mstype.float64)
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = BatchMatMulNet()
output = net(input_x, input_y)
expect = [[[[20, 23, 26, 29]],
[[200, 212, 224, 236]],
[[596, 617, 638, 659]],
[[1208, 1238, 1268, 1298]]],
[[[2036, 2075, 2114, 2153]],
[[3080, 3128, 3176, 3224]],
[[4340, 4397, 4454, 4511]],
[[5816, 5882, 5948, 6014]]]]
assert (output.asnumpy() == expect).all()
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard

View File

@ -22,6 +22,15 @@ from mindspore import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner from mindspore.ops.operations import _inner_ops as inner
class MatMulNet(nn.Cell):
def __init__(self):
super(MatMulNet, self).__init__()
self.matmul = P.MatMul()
def construct(self, x, y):
return self.matmul(x, y)
class MatMul_d(nn.Cell): class MatMul_d(nn.Cell):
def __init__(self): def __init__(self):
super(MatMul_d, self).__init__() super(MatMul_d, self).__init__()
@ -33,6 +42,7 @@ class MatMul_d(nn.Cell):
y = self.test_dynamic(y) y = self.test_dynamic(y)
return self.matmul(x, y) return self.matmul(x, y)
@pytest.mark.level0 @pytest.mark.level0
@pytest.mark.platform_x86_gpu_training @pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard @pytest.mark.env_onecard
@ -52,3 +62,18 @@ def test_MatMul_dynamic():
output2 = net(Tensor(x2), Tensor(y2)) output2 = net(Tensor(x2), Tensor(y2))
expect2 = np.matmul(x2, y2) expect2 = np.matmul(x2, y2)
np.testing.assert_array_almost_equal(output2.asnumpy(), expect2) np.testing.assert_array_almost_equal(output2.asnumpy(), expect2)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_matmul_float64():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
net = MatMulNet()
x = np.arange(102).reshape(34, 3).astype(np.float64)
y = np.arange(18).reshape(3, 6).astype(np.float64)
output = net(Tensor(x), Tensor(y))
expect = np.matmul(x, y)
np.testing.assert_array_almost_equal(output.asnumpy(), expect)