diff --git a/mindspore/ops/operations/nn_ops.py b/mindspore/ops/operations/nn_ops.py index 5b7373a8f5c..57b8f84be12 100644 --- a/mindspore/ops/operations/nn_ops.py +++ b/mindspore/ops/operations/nn_ops.py @@ -6491,7 +6491,7 @@ class DynamicRNN(PrimitiveWithInfer): class DynamicGRUV2(PrimitiveWithInfer): r""" - DynamicGRUV2 Operator. + Applies a single-layer gated recurrent unit (GRU) to an input sequence. Args: direction (str): A string identifying the direction in the op. Default: 'UNIDIRECTIONAL'. @@ -6532,19 +6532,19 @@ class DynamicGRUV2(PrimitiveWithInfer): - **y** (Tensor) - A Tensor of shape :math: if num_proj > 0 `(num_step, batch_size, min(hidden_size, num_proj)`, if num_proj == 0 `(num_step, batch_size, hidden_size)`. - Has the same data type with input `bais_type`. + Has the same data type with input `bias_type`. - **output_h** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. - Has the same data type with input `bais_type`. + Has the same data type with input `bias_type`. - **update** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. - Has the same data type with input `bais_type`. + Has the same data type with input `bias_type`. - **reset** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. - Has the same data type with input `bais_type`. + Has the same data type with input `bias_type`. - **new** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. - Has the same data type with input `bais_type`. + Has the same data type with input `bias_type`. - **hidden_new** (Tensor) - A Tensor of shape :math:`(\text{num_step}, \text{batch_size}, \text{hidden_size})`. - Has the same data type with input `bais_type`. + Has the same data type with input `bias_type`. - - If `bias_input` and `bias_hidden` both are `None`, `bias_type` is float32. + - If `bias_input` and `bias_hidden` both are `None`, `bias_type` is date type of `init_h`. - If `bias_input` is not `None`, `bias_type` is the date type of `bias_input`. - If `bias_input` is `None` and `bias_hidden` is not `None, `bias_type` is the date type of `bias_hidden`. @@ -6563,6 +6563,15 @@ class DynamicGRUV2(PrimitiveWithInfer): >>> print(output[0].shape) (2, 8, 16) """ + __mindspore_signature__ = ( + sig.make_sig('x', dtype=sig.sig_dtype.T1), + sig.make_sig('weight_input', dtype=sig.sig_dtype.T2), + sig.make_sig('weight_hidden', dtype=sig.sig_dtype.T3), + sig.make_sig('bias_input', dtype=sig.sig_dtype.T), + sig.make_sig('bias_hidden', dtype=sig.sig_dtype.T), + sig.make_sig('seq_length', dtype=sig.sig_dtype.T4), + sig.make_sig('init_h', dtype=sig.sig_dtype.T), + ) @prim_attr_register def __init__(self, @@ -6631,7 +6640,7 @@ class DynamicGRUV2(PrimitiveWithInfer): validator.check_tensor_dtype_valid("weight input dtype", winput_dtype, [mstype.float16], self.name) validator.check_tensor_dtype_valid("weight hidden dtype", whidden_dtype, [mstype.float16], self.name) validator.check_tensor_dtype_valid("init_h dtype", h_dtype, (mstype.float16, mstype.float32), self.name) - b_dtype = mstype.float32 + b_dtype = h_dtype if binput_dtype is not None: validator.check_tensor_dtype_valid("bias input dtype", binput_dtype, (mstype.float16, mstype.float32), self.name)