forked from mindspore-Ecosystem/mindspore
!11490 Add LSTM Ascend distribute train
From: @ttudu Reviewed-by: @c_34,@guoqi1024 Signed-off-by: @guoqi1024
This commit is contained in:
commit
44cd679a5f
|
@ -22,11 +22,9 @@ import numpy as np
|
|||
|
||||
from src.config import lstm_cfg, lstm_cfg_ascend
|
||||
from src.dataset import lstm_create_dataset, convert_to_mindrecord
|
||||
from src.lr_schedule import get_lr
|
||||
from src.lstm import SentimentNet
|
||||
from mindspore import Tensor, nn, Model, context
|
||||
from mindspore.nn import Accuracy
|
||||
from mindspore.train.callback import LossMonitor
|
||||
from mindspore.nn import Accuracy, Recall, F1
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -79,20 +77,8 @@ if __name__ == '__main__':
|
|||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
ds_eval = lstm_create_dataset(args.preprocess_path, cfg.batch_size, training=False)
|
||||
if cfg.dynamic_lr:
|
||||
lr = Tensor(get_lr(global_step=cfg.global_step,
|
||||
lr_init=cfg.lr_init, lr_end=cfg.lr_end, lr_max=cfg.lr_max,
|
||||
warmup_epochs=cfg.warmup_epochs,
|
||||
total_epochs=cfg.num_epochs,
|
||||
steps_per_epoch=ds_eval.get_dataset_size(),
|
||||
lr_adjust_epoch=cfg.lr_adjust_epoch))
|
||||
else:
|
||||
lr = cfg.learning_rate
|
||||
|
||||
opt = nn.Momentum(network.trainable_params(), lr, cfg.momentum)
|
||||
loss_cb = LossMonitor()
|
||||
|
||||
model = Model(network, loss, opt, {'acc': Accuracy()})
|
||||
model = Model(network, loss, metrics={'acc': Accuracy(), 'recall': Recall(), 'f1': F1()})
|
||||
|
||||
print("============== Starting Testing ==============")
|
||||
param_dict = load_checkpoint(args.ckpt_path)
|
||||
|
|
|
@ -0,0 +1,48 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
echo "=============================================================================================================="
|
||||
echo "Please run the script as: "
|
||||
echo "bash run_distribute_train_ascend.sh RANK_TABLE_FILE DEVICE_NUM ACLIMDB_DIR GLOVE_DIR"
|
||||
echo "for example: bash run_distribute_train_ascend.sh /path/hccl.json 8 /path/aclimdb /path/glove"
|
||||
echo "It is better to use absolute path."
|
||||
echo "=============================================================================================================="
|
||||
|
||||
ROOT_PATH=`pwd`
|
||||
export RANK_TABLE_FILE=$1
|
||||
RANK_SIZE=$2
|
||||
ACLIMDB_DIR=$3
|
||||
GLOVE_DIR=$4
|
||||
|
||||
|
||||
for((i=0;i<${RANK_SIZE};i++));
|
||||
do
|
||||
rm ${ROOT_PATH}/device$i/ -rf
|
||||
mkdir ${ROOT_PATH}/device$i
|
||||
cd ${ROOT_PATH}/device$i || exit
|
||||
cp ../../*.py ./
|
||||
cp -r ../../src ./
|
||||
export RANK_ID=$i
|
||||
export DEVICE_ID=$i
|
||||
python train.py \
|
||||
--device_target="Ascend" \
|
||||
--aclimdb_path=$ACLIMDB_DIR \
|
||||
--glove_path=$GLOVE_DIR \
|
||||
--distribute=true \
|
||||
--device_num=$RANK_SIZE \
|
||||
--preprocess=true \
|
||||
--preprocess_path=./preprocess > log.txt 2>&1 &
|
||||
done
|
|
@ -33,7 +33,7 @@ lstm_cfg = edict({
|
|||
'keep_checkpoint_max': 10
|
||||
})
|
||||
|
||||
# LSTM CONFIG IN ASCEND
|
||||
# LSTM CONFIG IN ASCEND for 1p training
|
||||
lstm_cfg_ascend = edict({
|
||||
'num_classes': 2,
|
||||
'momentum': 0.9,
|
||||
|
@ -53,3 +53,24 @@ lstm_cfg_ascend = edict({
|
|||
'warmup_epochs': 1,
|
||||
'global_step': 0
|
||||
})
|
||||
|
||||
# LSTM CONFIG IN ASCEND for 8p training
|
||||
lstm_cfg_ascend_8p = edict({
|
||||
'num_classes': 2,
|
||||
'momentum': 0.9,
|
||||
'num_epochs': 20,
|
||||
'batch_size': 64,
|
||||
'embed_size': 300,
|
||||
'num_hiddens': 128,
|
||||
'num_layers': 2,
|
||||
'bidirectional': True,
|
||||
'save_checkpoint_steps': 7800,
|
||||
'keep_checkpoint_max': 10,
|
||||
'dynamic_lr': True,
|
||||
'lr_init': 0.05,
|
||||
'lr_end': 0.01,
|
||||
'lr_max': 0.3,
|
||||
'lr_adjust_epoch': 20,
|
||||
'warmup_epochs': 2,
|
||||
'global_step': 0
|
||||
})
|
||||
|
|
|
@ -24,14 +24,15 @@ from mindspore.mindrecord import FileWriter
|
|||
from .imdb import ImdbParser
|
||||
|
||||
|
||||
def lstm_create_dataset(data_home, batch_size, repeat_num=1, training=True):
|
||||
def lstm_create_dataset(data_home, batch_size, repeat_num=1, training=True, device_num=1, rank=0):
|
||||
"""Data operations."""
|
||||
ds.config.set_seed(1)
|
||||
data_dir = os.path.join(data_home, "aclImdb_train.mindrecord0")
|
||||
if not training:
|
||||
data_dir = os.path.join(data_home, "aclImdb_test.mindrecord0")
|
||||
|
||||
data_set = ds.MindDataset(data_dir, columns_list=["feature", "label"], num_parallel_workers=4)
|
||||
data_set = ds.MindDataset(data_dir, columns_list=["feature", "label"], num_parallel_workers=4,
|
||||
num_shards=device_num, shard_id=rank)
|
||||
|
||||
# apply map operations on images
|
||||
data_set = data_set.shuffle(buffer_size=data_set.get_dataset_size())
|
||||
|
|
|
@ -20,7 +20,7 @@ import os
|
|||
|
||||
import numpy as np
|
||||
|
||||
from src.config import lstm_cfg, lstm_cfg_ascend
|
||||
from src.config import lstm_cfg, lstm_cfg_ascend, lstm_cfg_ascend_8p
|
||||
from src.dataset import convert_to_mindrecord
|
||||
from src.dataset import lstm_create_dataset
|
||||
from src.lr_schedule import get_lr
|
||||
|
@ -29,6 +29,8 @@ from mindspore import Tensor, nn, Model, context
|
|||
from mindspore.nn import Accuracy
|
||||
from mindspore.train.callback import LossMonitor, CheckpointConfig, ModelCheckpoint, TimeMonitor
|
||||
from mindspore.train.serialization import load_param_into_net, load_checkpoint
|
||||
from mindspore.communication.management import init, get_rank
|
||||
from mindspore.context import ParallelMode
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='MindSpore LSTM Example')
|
||||
|
@ -46,6 +48,9 @@ if __name__ == '__main__':
|
|||
help='the pretrained checkpoint file path.')
|
||||
parser.add_argument('--device_target', type=str, default="Ascend", choices=['GPU', 'CPU', 'Ascend'],
|
||||
help='the target device to run, support "GPU", "CPU". Default: "Ascend".')
|
||||
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
|
||||
parser.add_argument("--distribute", type=str, default="false", choices=["true", "false"],
|
||||
help="Run distribute, default is false.")
|
||||
args = parser.parse_args()
|
||||
|
||||
context.set_context(
|
||||
|
@ -53,8 +58,20 @@ if __name__ == '__main__':
|
|||
save_graphs=False,
|
||||
device_target=args.device_target)
|
||||
|
||||
rank = 0
|
||||
device_num = 1
|
||||
|
||||
if args.device_target == 'Ascend':
|
||||
cfg = lstm_cfg_ascend
|
||||
if args.distribute == "true":
|
||||
cfg = lstm_cfg_ascend_8p
|
||||
init()
|
||||
device_num = args.device_num
|
||||
rank = get_rank()
|
||||
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
|
||||
device_num=device_num)
|
||||
else:
|
||||
cfg = lstm_cfg
|
||||
|
||||
|
@ -82,7 +99,7 @@ if __name__ == '__main__':
|
|||
if args.pre_trained:
|
||||
load_param_into_net(network, load_checkpoint(args.pre_trained))
|
||||
|
||||
ds_train = lstm_create_dataset(args.preprocess_path, cfg.batch_size, 1)
|
||||
ds_train = lstm_create_dataset(args.preprocess_path, cfg.batch_size, 1, device_num=device_num, rank=rank)
|
||||
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
if cfg.dynamic_lr:
|
||||
|
|
Loading…
Reference in New Issue