fix pylint warnings in model_zoo

This commit is contained in:
panbingao 2020-08-10 19:27:52 +08:00
parent 35b16d8ca4
commit 3f60bf6dfe
27 changed files with 50 additions and 20 deletions

View File

@ -13,10 +13,10 @@
# limitations under the License.
# ============================================================================
"""Dataset module."""
import numpy as np
from PIL import Image
import mindspore.dataset as de
import mindspore.dataset.transforms.vision.c_transforms as C
import numpy as np
from .ei_dataset import HwVocRawDataset
from .utils import custom_transforms as tr

View File

@ -110,8 +110,6 @@ class LossCallBack(Callback):
class LossNet(nn.Cell):
"""FasterRcnn loss method"""
def __init__(self):
super(LossNet, self).__init__()
def construct(self, x1, x2, x3, x4, x5, x6):
return x1 + x2

View File

@ -117,8 +117,6 @@ class LossCallBack(Callback):
class LossNet(nn.Cell):
"""MaskRcnn loss method"""
def __init__(self):
super(LossNet, self).__init__()
def construct(self, x1, x2, x3, x4, x5, x6, x7):
return x1 + x2

View File

@ -20,8 +20,8 @@ from __future__ import division
import os
import json
import xml.etree.ElementTree as et
import cv2
import numpy as np
import cv2
import mindspore.dataset as de
import mindspore.dataset.transforms.vision.c_transforms as C

View File

@ -14,8 +14,8 @@
# ============================================================================
"""Parameters utils"""
from mindspore.common.initializer import initializer, TruncatedNormal
import numpy as np
from mindspore.common.initializer import initializer, TruncatedNormal
def init_net_param(network, initialize_mode='TruncatedNormal'):
"""Init the parameters in net."""

View File

@ -13,6 +13,7 @@
# limitations under the License.
# ============================================================================
"""Automatic differentiation with grad clip."""
import numpy as np
from mindspore.parallel._utils import (_get_device_num, _get_mirror_mean,
_get_parallel_mode)
from mindspore.train.parallel_utils import ParallelMode
@ -24,7 +25,6 @@ from mindspore.nn.cell import Cell
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
import mindspore.nn as nn
from mindspore.common.tensor import Tensor
import numpy as np
compute_norm = C.MultitypeFuncGraph("compute_norm")

View File

@ -297,6 +297,9 @@ class AttentionHead(nn.Cell):
self.activation = activation
def construct(self, input_feature, bias_mat, training=True):
"""
Attention Head for Graph Attention Networks.
"""
if training is True:
input_feature = self.in_drop(input_feature)

View File

@ -38,7 +38,7 @@ class MaskedSoftMaxLoss(nn.Cell):
self.num_params = len(self.params)
def construct(self, logits):
# calc l2 loss
"""calc l2 loss"""
l2_loss = 0
for i in range(self.num_params):
l2_loss = l2_loss + self.l2_coeff * P.L2Loss()(self.params[i])
@ -69,6 +69,7 @@ class MaskedAccuracy(nn.Cell):
self.mask = Tensor(mask, dtype=mstype.float32)
def construct(self, logits):
"""Calculate accuracy"""
logits = P.Reshape()(logits, (-1, self.num_class))
labels = P.Reshape()(self.label, (-1, self.num_class))
mask = P.Reshape()(self.mask, (-1,))

View File

@ -66,6 +66,9 @@ class GraphConvolution(nn.Cell):
self.matmul = P.MatMul()
def construct(self, adj, input_feature):
"""
GCN graph convolution layer.
"""
dropout = input_feature
if self.dropout_flag:
dropout = self.dropout(dropout)

View File

@ -39,6 +39,7 @@ class Loss(nn.Cell):
self.param = param
def construct(self, preds):
"""Calculate loss"""
param = self.l2_loss(self.param)
loss = self.weight_decay * param
preds = self.cast(preds, mstype.float32)

View File

@ -88,6 +88,7 @@ class BertPretrainEva(nn.Cell):
def construct(self, input_ids, input_mask, token_type_id, masked_pos, masked_ids, masked_weights, nsp_label):
"""Calculate prediction scores"""
bs, _ = self.shape(input_ids)
probs = self.bert(input_ids, input_mask, token_type_id, masked_pos)
index = self.argmax(probs)

View File

@ -99,7 +99,7 @@ class BertFinetuneCell(nn.Cell):
token_type_id,
label_ids,
sens=None):
"""Bert Finetune"""
weights = self.weights
init = False
@ -195,6 +195,7 @@ class BertSquadCell(nn.Cell):
unique_id,
is_impossible,
sens=None):
"""BertSquad"""
weights = self.weights
init = self.alloc_status()
loss = self.network(input_ids,
@ -313,6 +314,7 @@ class BertSquad(nn.Cell):
self.squeeze = P.Squeeze(axis=-1)
def construct(self, input_ids, input_mask, token_type_id, start_position, end_position, unique_id, is_impossible):
"""interface for SQuAD finetuning task"""
logits = self.bert(input_ids, input_mask, token_type_id)
if self.is_training:
unstacked_logits_0 = self.squeeze(logits[:, :, 0:1])

View File

@ -103,6 +103,7 @@ class GetMaskedLMOutput(nn.Cell):
input_tensor,
output_weights,
positions):
"""Get output log_probs"""
flat_offsets = self.reshape(
self.rng * self.seq_length_tensor, self.shape_flat_offsets)
flat_position = self.reshape(positions + flat_offsets, self.last_idx)
@ -248,6 +249,7 @@ class BertNetworkWithLoss(nn.Cell):
masked_lm_positions,
masked_lm_ids,
masked_lm_weights):
"""Get pre-training loss"""
prediction_scores, seq_relationship_score = \
self.bert(input_ids, input_mask, token_type_id, masked_lm_positions)
total_loss = self.loss(prediction_scores, seq_relationship_score,

View File

@ -137,6 +137,7 @@ class EmbeddingLookup(nn.Cell):
self.shape = tuple(embedding_shape)
def construct(self, input_ids):
"""Get output and embeddings lookup table"""
extended_ids = self.expand(input_ids, -1)
flat_ids = self.reshape(extended_ids, self.shape_flat)
if self.use_one_hot_embeddings:
@ -205,6 +206,7 @@ class EmbeddingPostprocessor(nn.Cell):
name='full_position_embeddings')
def construct(self, token_type_ids, word_embeddings):
"""Postprocessors apply positional and token type embeddings to word embeddings."""
output = word_embeddings
if self.use_token_type:
flat_ids = self.reshape(token_type_ids, self.shape_flat)
@ -288,6 +290,7 @@ class RelaPosMatrixGenerator(nn.Cell):
self.cast = P.Cast()
def construct(self):
"""Generates matrix of relative positions between inputs."""
range_vec_row_out = self.cast(F.tuple_to_array(F.make_range(self._length)), mstype.int32)
range_vec_col_out = self.range_mat(range_vec_row_out, (self._length, -1))
tile_row_out = self.tile(range_vec_row_out, (self._length,))
@ -342,9 +345,9 @@ class RelaPosEmbeddingsGenerator(nn.Cell):
self.matmul = P.BatchMatMul()
def construct(self):
"""Generate embedding for each relative position of dimension depth."""
relative_positions_matrix_out = self.relative_positions_matrix()
# Generate embedding for each relative position of dimension depth.
if self.use_one_hot_embeddings:
flat_relative_positions_matrix = self.reshape(relative_positions_matrix_out, (-1,))
one_hot_relative_positions_matrix = self.one_hot(
@ -495,7 +498,7 @@ class BertAttention(nn.Cell):
use_one_hot_embeddings=use_one_hot_embeddings)
def construct(self, from_tensor, to_tensor, attention_mask):
# reshape 2d/3d input tensors to 2d
"""reshape 2d/3d input tensors to 2d"""
from_tensor_2d = self.reshape(from_tensor, self.shape_from_2d)
to_tensor_2d = self.reshape(to_tensor, self.shape_to_2d)
query_out = self.query_layer(from_tensor_2d)
@ -784,6 +787,7 @@ class BertTransformer(nn.Cell):
self.out_shape = (batch_size, seq_length, hidden_size)
def construct(self, input_tensor, attention_mask):
"""Multi-layer bert transformer."""
prev_output = self.reshape(input_tensor, self.shape)
all_encoder_layers = ()
@ -915,7 +919,7 @@ class BertModel(nn.Cell):
self._create_attention_mask_from_input_mask = CreateAttentionMaskFromInputMask(config)
def construct(self, input_ids, token_type_ids, input_mask):
"""Bidirectional Encoder Representations from Transformers."""
# embedding
if not self.token_type_ids_from_dataset:
token_type_ids = self.token_type_ids

View File

@ -110,6 +110,7 @@ class BertNERModel(nn.Cell):
self.origin_shape = (config.batch_size, config.seq_length, self.num_labels)
def construct(self, input_ids, input_mask, token_type_id):
"""Return the final logits as the results of log_softmax."""
sequence_output, _, _ = \
self.bert(input_ids, token_type_id, input_mask)
seq = self.dropout(sequence_output)

View File

@ -13,6 +13,7 @@
# limitations under the License.
# ============================================================================
"""fused layernorm"""
import numpy as np
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.common.parameter import Parameter
@ -21,7 +22,6 @@ from mindspore.ops.primitive import constexpr
import mindspore.common.dtype as mstype
from mindspore.nn.cell import Cell
import numpy as np
__all__ = ['FusedLayerNorm']
@ -101,6 +101,7 @@ class FusedLayerNorm(Cell):
self.use_batch_norm = use_batch_norm
def construct(self, input_x):
"""Applies Layer Normalization over a mini-batch of inputs"""
if self.use_batch_norm and self.training:
ones = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 1.0)
zeros = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 0.0)

View File

@ -52,6 +52,7 @@ class LayerNorm(nn.Cell):
self.get_shape = P.Shape()
def construct(self, input_tensor):
"""layer norm"""
shape = self.get_shape(input_tensor)
batch_size = shape[0]
max_len = shape[1]

View File

@ -13,6 +13,7 @@
# limitations under the License.
# ============================================================================
"""fused layernorm"""
import numpy as np
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.common.parameter import Parameter
@ -21,7 +22,6 @@ from mindspore.ops.primitive import constexpr
import mindspore.common.dtype as mstype
from mindspore.nn.cell import Cell
import numpy as np
__all__ = ['FusedLayerNorm']

View File

@ -241,6 +241,7 @@ class BeamSearchDecoder(nn.Cell):
return cur_input_ids, state_log_probs, state_seq, state_finished, state_length
def construct(self, enc_states, enc_attention_mask):
"""Get beam search result."""
cur_input_ids = self.start_ids
# beam search states
state_log_probs = self.init_scores

View File

@ -55,7 +55,7 @@ class ClipGradients(nn.Cell):
grads,
clip_type,
clip_value):
# return grads
"""return grads"""
if clip_type != 0 and clip_type != 1:
return grads

View File

@ -131,6 +131,7 @@ class EmbeddingLookup(nn.Cell):
self.shape = P.Shape()
def construct(self, input_ids):
"""Get a embeddings lookup table with a fixed dictionary and size."""
input_shape = self.shape(input_ids)
flat_ids = self.reshape(input_ids, self.shape_flat)
@ -200,6 +201,7 @@ class EmbeddingPostprocessor(nn.Cell):
self.shape = P.Shape()
def construct(self, word_embeddings):
"""Postprocessors apply positional embeddings to word embeddings."""
input_shape = self.shape(word_embeddings)
input_len = input_shape[1]
@ -377,7 +379,7 @@ class MultiheadAttention(nn.Cell):
self.softmax_cast = P.Cast()
def construct(self, from_tensor, to_tensor, attention_mask=None):
# reshape 2d/3d input tensors to 2d
"""reshape 2d/3d input tensors to 2d"""
from_tensor_2d = self.reshape(from_tensor, self.shape_from_2d)
to_tensor_2d = self.reshape(to_tensor, self.shape_to_2d)
query_out = self.query_layer(from_tensor_2d)
@ -476,6 +478,7 @@ class SelfAttention(nn.Cell):
self.reshape = P.Reshape()
self.shape = (-1, hidden_size)
def construct(self, input_tensor, memory_tensor, attention_mask):
"""Apply self-attention."""
input_tensor = self.reshape(input_tensor, self.shape)
memory_tensor = self.reshape(memory_tensor, self.shape)
@ -831,6 +834,7 @@ class CreateAttentionMaskFromInputMask(nn.Cell):
self.batch_matmul = P.BatchMatMul()
def construct(self, input_mask):
"""Create attention mask according to input mask."""
input_shape = self.shape(input_mask)
shape_right = (input_shape[0], 1, input_shape[1])
shape_left = input_shape + (1,)
@ -876,6 +880,7 @@ class PredLogProbs(nn.Cell):
def construct(self,
input_tensor,
output_weights):
"""Get log probs."""
input_tensor = self.reshape(input_tensor, self.shape_flat_sequence_tensor)
input_tensor = self.cast(input_tensor, self.compute_type)
output_weights = self.cast(output_weights, self.compute_type)
@ -962,7 +967,10 @@ class TransformerDecoderStep(nn.Cell):
self.cast_compute_type = CastWrapper(dst_type=compute_type)
def construct(self, input_ids, enc_states, enc_attention_mask):
# input_ids: [batch_size * beam_width]
"""
Multi-layer transformer decoder step.
input_ids: [batch_size * beam_width]
"""
# process embedding
input_embedding, embedding_tables = self.tfm_embedding_lookup(input_ids)
input_embedding = self.tfm_embedding_processor(input_embedding)
@ -1122,6 +1130,7 @@ class TransformerModel(nn.Cell):
self.encdec_mask = Tensor(ones, dtype=mstype.float32)
def construct(self, source_ids, source_mask, target_ids=None, target_mask=None):
"""Transformer with encoder and decoder."""
# process source sentence
src_word_embeddings, embedding_tables = self.tfm_embedding_lookup(source_ids)
src_embedding_output = self.tfm_embedding_postprocessor_for_encoder(src_word_embeddings)

View File

@ -69,6 +69,7 @@ class LossCallBack(Callback):
time_stamp_init = True
def step_end(self, run_context):
"""Monitor the loss in training."""
global time_stamp_first
time_stamp_current = get_ms_timestamp()
cb_params = run_context.original_args()

View File

@ -68,6 +68,7 @@ class LossCallBack(Callback):
self._per_print_times = per_print_times
def step_end(self, run_context):
"""Monitor the loss in training."""
cb_params = run_context.original_args()
loss = cb_params.net_outputs.asnumpy()
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1

View File

@ -19,8 +19,8 @@ import os
import math
from enum import Enum
import pandas as pd
import numpy as np
import pandas as pd
import mindspore.dataset.engine as de
import mindspore.common.dtype as mstype

View File

@ -147,6 +147,7 @@ class DenseLayer(nn.Cell):
return act_func
def construct(self, x):
"""Dense Layer for Deep Layer of DeepFM Model."""
x = self.act_func(x)
if self.training:
x = self.dropout(x)

View File

@ -47,6 +47,7 @@ class LossCallBack(Callback):
self.config = config
def step_end(self, run_context):
"""Monitor the loss in training."""
cb_params = run_context.original_args()
wide_loss, deep_loss = cb_params.net_outputs[0].asnumpy(), cb_params.net_outputs[1].asnumpy()
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1

View File

@ -13,6 +13,7 @@
# limitations under the License.
# ============================================================================
"""wide and deep model"""
import numpy as np
from mindspore import nn
from mindspore import Parameter, ParameterTuple
import mindspore.common.dtype as mstype
@ -28,7 +29,6 @@ from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_
from mindspore.train.parallel_utils import ParallelMode
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
from mindspore.communication.management import get_group_size
import numpy as np
np_type = np.float32
ms_type = mstype.float32