forked from mindspore-Ecosystem/mindspore
fix pylint warnings in model_zoo
This commit is contained in:
parent
35b16d8ca4
commit
3f60bf6dfe
|
@ -13,10 +13,10 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Dataset module."""
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import mindspore.dataset as de
|
||||
import mindspore.dataset.transforms.vision.c_transforms as C
|
||||
import numpy as np
|
||||
|
||||
from .ei_dataset import HwVocRawDataset
|
||||
from .utils import custom_transforms as tr
|
||||
|
|
|
@ -110,8 +110,6 @@ class LossCallBack(Callback):
|
|||
|
||||
class LossNet(nn.Cell):
|
||||
"""FasterRcnn loss method"""
|
||||
def __init__(self):
|
||||
super(LossNet, self).__init__()
|
||||
def construct(self, x1, x2, x3, x4, x5, x6):
|
||||
return x1 + x2
|
||||
|
||||
|
|
|
@ -117,8 +117,6 @@ class LossCallBack(Callback):
|
|||
|
||||
class LossNet(nn.Cell):
|
||||
"""MaskRcnn loss method"""
|
||||
def __init__(self):
|
||||
super(LossNet, self).__init__()
|
||||
def construct(self, x1, x2, x3, x4, x5, x6, x7):
|
||||
return x1 + x2
|
||||
|
||||
|
|
|
@ -20,8 +20,8 @@ from __future__ import division
|
|||
import os
|
||||
import json
|
||||
import xml.etree.ElementTree as et
|
||||
import cv2
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
import mindspore.dataset as de
|
||||
import mindspore.dataset.transforms.vision.c_transforms as C
|
||||
|
|
|
@ -14,8 +14,8 @@
|
|||
# ============================================================================
|
||||
"""Parameters utils"""
|
||||
|
||||
from mindspore.common.initializer import initializer, TruncatedNormal
|
||||
import numpy as np
|
||||
from mindspore.common.initializer import initializer, TruncatedNormal
|
||||
|
||||
def init_net_param(network, initialize_mode='TruncatedNormal'):
|
||||
"""Init the parameters in net."""
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Automatic differentiation with grad clip."""
|
||||
import numpy as np
|
||||
from mindspore.parallel._utils import (_get_device_num, _get_mirror_mean,
|
||||
_get_parallel_mode)
|
||||
from mindspore.train.parallel_utils import ParallelMode
|
||||
|
@ -24,7 +25,6 @@ from mindspore.nn.cell import Cell
|
|||
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.tensor import Tensor
|
||||
import numpy as np
|
||||
|
||||
compute_norm = C.MultitypeFuncGraph("compute_norm")
|
||||
|
||||
|
|
|
@ -297,6 +297,9 @@ class AttentionHead(nn.Cell):
|
|||
self.activation = activation
|
||||
|
||||
def construct(self, input_feature, bias_mat, training=True):
|
||||
"""
|
||||
Attention Head for Graph Attention Networks.
|
||||
"""
|
||||
if training is True:
|
||||
input_feature = self.in_drop(input_feature)
|
||||
|
||||
|
|
|
@ -38,7 +38,7 @@ class MaskedSoftMaxLoss(nn.Cell):
|
|||
self.num_params = len(self.params)
|
||||
|
||||
def construct(self, logits):
|
||||
# calc l2 loss
|
||||
"""calc l2 loss"""
|
||||
l2_loss = 0
|
||||
for i in range(self.num_params):
|
||||
l2_loss = l2_loss + self.l2_coeff * P.L2Loss()(self.params[i])
|
||||
|
@ -69,6 +69,7 @@ class MaskedAccuracy(nn.Cell):
|
|||
self.mask = Tensor(mask, dtype=mstype.float32)
|
||||
|
||||
def construct(self, logits):
|
||||
"""Calculate accuracy"""
|
||||
logits = P.Reshape()(logits, (-1, self.num_class))
|
||||
labels = P.Reshape()(self.label, (-1, self.num_class))
|
||||
mask = P.Reshape()(self.mask, (-1,))
|
||||
|
|
|
@ -66,6 +66,9 @@ class GraphConvolution(nn.Cell):
|
|||
self.matmul = P.MatMul()
|
||||
|
||||
def construct(self, adj, input_feature):
|
||||
"""
|
||||
GCN graph convolution layer.
|
||||
"""
|
||||
dropout = input_feature
|
||||
if self.dropout_flag:
|
||||
dropout = self.dropout(dropout)
|
||||
|
|
|
@ -39,6 +39,7 @@ class Loss(nn.Cell):
|
|||
self.param = param
|
||||
|
||||
def construct(self, preds):
|
||||
"""Calculate loss"""
|
||||
param = self.l2_loss(self.param)
|
||||
loss = self.weight_decay * param
|
||||
preds = self.cast(preds, mstype.float32)
|
||||
|
|
|
@ -88,6 +88,7 @@ class BertPretrainEva(nn.Cell):
|
|||
|
||||
|
||||
def construct(self, input_ids, input_mask, token_type_id, masked_pos, masked_ids, masked_weights, nsp_label):
|
||||
"""Calculate prediction scores"""
|
||||
bs, _ = self.shape(input_ids)
|
||||
probs = self.bert(input_ids, input_mask, token_type_id, masked_pos)
|
||||
index = self.argmax(probs)
|
||||
|
|
|
@ -99,7 +99,7 @@ class BertFinetuneCell(nn.Cell):
|
|||
token_type_id,
|
||||
label_ids,
|
||||
sens=None):
|
||||
|
||||
"""Bert Finetune"""
|
||||
|
||||
weights = self.weights
|
||||
init = False
|
||||
|
@ -195,6 +195,7 @@ class BertSquadCell(nn.Cell):
|
|||
unique_id,
|
||||
is_impossible,
|
||||
sens=None):
|
||||
"""BertSquad"""
|
||||
weights = self.weights
|
||||
init = self.alloc_status()
|
||||
loss = self.network(input_ids,
|
||||
|
@ -313,6 +314,7 @@ class BertSquad(nn.Cell):
|
|||
self.squeeze = P.Squeeze(axis=-1)
|
||||
|
||||
def construct(self, input_ids, input_mask, token_type_id, start_position, end_position, unique_id, is_impossible):
|
||||
"""interface for SQuAD finetuning task"""
|
||||
logits = self.bert(input_ids, input_mask, token_type_id)
|
||||
if self.is_training:
|
||||
unstacked_logits_0 = self.squeeze(logits[:, :, 0:1])
|
||||
|
|
|
@ -103,6 +103,7 @@ class GetMaskedLMOutput(nn.Cell):
|
|||
input_tensor,
|
||||
output_weights,
|
||||
positions):
|
||||
"""Get output log_probs"""
|
||||
flat_offsets = self.reshape(
|
||||
self.rng * self.seq_length_tensor, self.shape_flat_offsets)
|
||||
flat_position = self.reshape(positions + flat_offsets, self.last_idx)
|
||||
|
@ -248,6 +249,7 @@ class BertNetworkWithLoss(nn.Cell):
|
|||
masked_lm_positions,
|
||||
masked_lm_ids,
|
||||
masked_lm_weights):
|
||||
"""Get pre-training loss"""
|
||||
prediction_scores, seq_relationship_score = \
|
||||
self.bert(input_ids, input_mask, token_type_id, masked_lm_positions)
|
||||
total_loss = self.loss(prediction_scores, seq_relationship_score,
|
||||
|
|
|
@ -137,6 +137,7 @@ class EmbeddingLookup(nn.Cell):
|
|||
self.shape = tuple(embedding_shape)
|
||||
|
||||
def construct(self, input_ids):
|
||||
"""Get output and embeddings lookup table"""
|
||||
extended_ids = self.expand(input_ids, -1)
|
||||
flat_ids = self.reshape(extended_ids, self.shape_flat)
|
||||
if self.use_one_hot_embeddings:
|
||||
|
@ -205,6 +206,7 @@ class EmbeddingPostprocessor(nn.Cell):
|
|||
name='full_position_embeddings')
|
||||
|
||||
def construct(self, token_type_ids, word_embeddings):
|
||||
"""Postprocessors apply positional and token type embeddings to word embeddings."""
|
||||
output = word_embeddings
|
||||
if self.use_token_type:
|
||||
flat_ids = self.reshape(token_type_ids, self.shape_flat)
|
||||
|
@ -288,6 +290,7 @@ class RelaPosMatrixGenerator(nn.Cell):
|
|||
self.cast = P.Cast()
|
||||
|
||||
def construct(self):
|
||||
"""Generates matrix of relative positions between inputs."""
|
||||
range_vec_row_out = self.cast(F.tuple_to_array(F.make_range(self._length)), mstype.int32)
|
||||
range_vec_col_out = self.range_mat(range_vec_row_out, (self._length, -1))
|
||||
tile_row_out = self.tile(range_vec_row_out, (self._length,))
|
||||
|
@ -342,9 +345,9 @@ class RelaPosEmbeddingsGenerator(nn.Cell):
|
|||
self.matmul = P.BatchMatMul()
|
||||
|
||||
def construct(self):
|
||||
"""Generate embedding for each relative position of dimension depth."""
|
||||
relative_positions_matrix_out = self.relative_positions_matrix()
|
||||
|
||||
# Generate embedding for each relative position of dimension depth.
|
||||
if self.use_one_hot_embeddings:
|
||||
flat_relative_positions_matrix = self.reshape(relative_positions_matrix_out, (-1,))
|
||||
one_hot_relative_positions_matrix = self.one_hot(
|
||||
|
@ -495,7 +498,7 @@ class BertAttention(nn.Cell):
|
|||
use_one_hot_embeddings=use_one_hot_embeddings)
|
||||
|
||||
def construct(self, from_tensor, to_tensor, attention_mask):
|
||||
# reshape 2d/3d input tensors to 2d
|
||||
"""reshape 2d/3d input tensors to 2d"""
|
||||
from_tensor_2d = self.reshape(from_tensor, self.shape_from_2d)
|
||||
to_tensor_2d = self.reshape(to_tensor, self.shape_to_2d)
|
||||
query_out = self.query_layer(from_tensor_2d)
|
||||
|
@ -784,6 +787,7 @@ class BertTransformer(nn.Cell):
|
|||
self.out_shape = (batch_size, seq_length, hidden_size)
|
||||
|
||||
def construct(self, input_tensor, attention_mask):
|
||||
"""Multi-layer bert transformer."""
|
||||
prev_output = self.reshape(input_tensor, self.shape)
|
||||
|
||||
all_encoder_layers = ()
|
||||
|
@ -915,7 +919,7 @@ class BertModel(nn.Cell):
|
|||
self._create_attention_mask_from_input_mask = CreateAttentionMaskFromInputMask(config)
|
||||
|
||||
def construct(self, input_ids, token_type_ids, input_mask):
|
||||
|
||||
"""Bidirectional Encoder Representations from Transformers."""
|
||||
# embedding
|
||||
if not self.token_type_ids_from_dataset:
|
||||
token_type_ids = self.token_type_ids
|
||||
|
|
|
@ -110,6 +110,7 @@ class BertNERModel(nn.Cell):
|
|||
self.origin_shape = (config.batch_size, config.seq_length, self.num_labels)
|
||||
|
||||
def construct(self, input_ids, input_mask, token_type_id):
|
||||
"""Return the final logits as the results of log_softmax."""
|
||||
sequence_output, _, _ = \
|
||||
self.bert(input_ids, token_type_id, input_mask)
|
||||
seq = self.dropout(sequence_output)
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""fused layernorm"""
|
||||
import numpy as np
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
@ -21,7 +22,6 @@ from mindspore.ops.primitive import constexpr
|
|||
import mindspore.common.dtype as mstype
|
||||
from mindspore.nn.cell import Cell
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
__all__ = ['FusedLayerNorm']
|
||||
|
@ -101,6 +101,7 @@ class FusedLayerNorm(Cell):
|
|||
self.use_batch_norm = use_batch_norm
|
||||
|
||||
def construct(self, input_x):
|
||||
"""Applies Layer Normalization over a mini-batch of inputs"""
|
||||
if self.use_batch_norm and self.training:
|
||||
ones = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 1.0)
|
||||
zeros = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 0.0)
|
||||
|
|
|
@ -52,6 +52,7 @@ class LayerNorm(nn.Cell):
|
|||
self.get_shape = P.Shape()
|
||||
|
||||
def construct(self, input_tensor):
|
||||
"""layer norm"""
|
||||
shape = self.get_shape(input_tensor)
|
||||
batch_size = shape[0]
|
||||
max_len = shape[1]
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""fused layernorm"""
|
||||
import numpy as np
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common.parameter import Parameter
|
||||
|
@ -21,7 +22,6 @@ from mindspore.ops.primitive import constexpr
|
|||
import mindspore.common.dtype as mstype
|
||||
from mindspore.nn.cell import Cell
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
__all__ = ['FusedLayerNorm']
|
||||
|
|
|
@ -241,6 +241,7 @@ class BeamSearchDecoder(nn.Cell):
|
|||
return cur_input_ids, state_log_probs, state_seq, state_finished, state_length
|
||||
|
||||
def construct(self, enc_states, enc_attention_mask):
|
||||
"""Get beam search result."""
|
||||
cur_input_ids = self.start_ids
|
||||
# beam search states
|
||||
state_log_probs = self.init_scores
|
||||
|
|
|
@ -55,7 +55,7 @@ class ClipGradients(nn.Cell):
|
|||
grads,
|
||||
clip_type,
|
||||
clip_value):
|
||||
# return grads
|
||||
"""return grads"""
|
||||
if clip_type != 0 and clip_type != 1:
|
||||
return grads
|
||||
|
||||
|
|
|
@ -131,6 +131,7 @@ class EmbeddingLookup(nn.Cell):
|
|||
self.shape = P.Shape()
|
||||
|
||||
def construct(self, input_ids):
|
||||
"""Get a embeddings lookup table with a fixed dictionary and size."""
|
||||
input_shape = self.shape(input_ids)
|
||||
|
||||
flat_ids = self.reshape(input_ids, self.shape_flat)
|
||||
|
@ -200,6 +201,7 @@ class EmbeddingPostprocessor(nn.Cell):
|
|||
self.shape = P.Shape()
|
||||
|
||||
def construct(self, word_embeddings):
|
||||
"""Postprocessors apply positional embeddings to word embeddings."""
|
||||
input_shape = self.shape(word_embeddings)
|
||||
input_len = input_shape[1]
|
||||
|
||||
|
@ -377,7 +379,7 @@ class MultiheadAttention(nn.Cell):
|
|||
self.softmax_cast = P.Cast()
|
||||
|
||||
def construct(self, from_tensor, to_tensor, attention_mask=None):
|
||||
# reshape 2d/3d input tensors to 2d
|
||||
"""reshape 2d/3d input tensors to 2d"""
|
||||
from_tensor_2d = self.reshape(from_tensor, self.shape_from_2d)
|
||||
to_tensor_2d = self.reshape(to_tensor, self.shape_to_2d)
|
||||
query_out = self.query_layer(from_tensor_2d)
|
||||
|
@ -476,6 +478,7 @@ class SelfAttention(nn.Cell):
|
|||
self.reshape = P.Reshape()
|
||||
self.shape = (-1, hidden_size)
|
||||
def construct(self, input_tensor, memory_tensor, attention_mask):
|
||||
"""Apply self-attention."""
|
||||
input_tensor = self.reshape(input_tensor, self.shape)
|
||||
memory_tensor = self.reshape(memory_tensor, self.shape)
|
||||
|
||||
|
@ -831,6 +834,7 @@ class CreateAttentionMaskFromInputMask(nn.Cell):
|
|||
self.batch_matmul = P.BatchMatMul()
|
||||
|
||||
def construct(self, input_mask):
|
||||
"""Create attention mask according to input mask."""
|
||||
input_shape = self.shape(input_mask)
|
||||
shape_right = (input_shape[0], 1, input_shape[1])
|
||||
shape_left = input_shape + (1,)
|
||||
|
@ -876,6 +880,7 @@ class PredLogProbs(nn.Cell):
|
|||
def construct(self,
|
||||
input_tensor,
|
||||
output_weights):
|
||||
"""Get log probs."""
|
||||
input_tensor = self.reshape(input_tensor, self.shape_flat_sequence_tensor)
|
||||
input_tensor = self.cast(input_tensor, self.compute_type)
|
||||
output_weights = self.cast(output_weights, self.compute_type)
|
||||
|
@ -962,7 +967,10 @@ class TransformerDecoderStep(nn.Cell):
|
|||
self.cast_compute_type = CastWrapper(dst_type=compute_type)
|
||||
|
||||
def construct(self, input_ids, enc_states, enc_attention_mask):
|
||||
# input_ids: [batch_size * beam_width]
|
||||
"""
|
||||
Multi-layer transformer decoder step.
|
||||
input_ids: [batch_size * beam_width]
|
||||
"""
|
||||
# process embedding
|
||||
input_embedding, embedding_tables = self.tfm_embedding_lookup(input_ids)
|
||||
input_embedding = self.tfm_embedding_processor(input_embedding)
|
||||
|
@ -1122,6 +1130,7 @@ class TransformerModel(nn.Cell):
|
|||
self.encdec_mask = Tensor(ones, dtype=mstype.float32)
|
||||
|
||||
def construct(self, source_ids, source_mask, target_ids=None, target_mask=None):
|
||||
"""Transformer with encoder and decoder."""
|
||||
# process source sentence
|
||||
src_word_embeddings, embedding_tables = self.tfm_embedding_lookup(source_ids)
|
||||
src_embedding_output = self.tfm_embedding_postprocessor_for_encoder(src_word_embeddings)
|
||||
|
|
|
@ -69,6 +69,7 @@ class LossCallBack(Callback):
|
|||
time_stamp_init = True
|
||||
|
||||
def step_end(self, run_context):
|
||||
"""Monitor the loss in training."""
|
||||
global time_stamp_first
|
||||
time_stamp_current = get_ms_timestamp()
|
||||
cb_params = run_context.original_args()
|
||||
|
|
|
@ -68,6 +68,7 @@ class LossCallBack(Callback):
|
|||
self._per_print_times = per_print_times
|
||||
|
||||
def step_end(self, run_context):
|
||||
"""Monitor the loss in training."""
|
||||
cb_params = run_context.original_args()
|
||||
loss = cb_params.net_outputs.asnumpy()
|
||||
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
|
||||
|
|
|
@ -19,8 +19,8 @@ import os
|
|||
import math
|
||||
from enum import Enum
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.common.dtype as mstype
|
||||
|
||||
|
|
|
@ -147,6 +147,7 @@ class DenseLayer(nn.Cell):
|
|||
return act_func
|
||||
|
||||
def construct(self, x):
|
||||
"""Dense Layer for Deep Layer of DeepFM Model."""
|
||||
x = self.act_func(x)
|
||||
if self.training:
|
||||
x = self.dropout(x)
|
||||
|
|
|
@ -47,6 +47,7 @@ class LossCallBack(Callback):
|
|||
self.config = config
|
||||
|
||||
def step_end(self, run_context):
|
||||
"""Monitor the loss in training."""
|
||||
cb_params = run_context.original_args()
|
||||
wide_loss, deep_loss = cb_params.net_outputs[0].asnumpy(), cb_params.net_outputs[1].asnumpy()
|
||||
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
|
||||
|
|
|
@ -13,6 +13,7 @@
|
|||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""wide and deep model"""
|
||||
import numpy as np
|
||||
from mindspore import nn
|
||||
from mindspore import Parameter, ParameterTuple
|
||||
import mindspore.common.dtype as mstype
|
||||
|
@ -28,7 +29,6 @@ from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_
|
|||
from mindspore.train.parallel_utils import ParallelMode
|
||||
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
|
||||
from mindspore.communication.management import get_group_size
|
||||
import numpy as np
|
||||
|
||||
np_type = np.float32
|
||||
ms_type = mstype.float32
|
||||
|
|
Loading…
Reference in New Issue