diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/arithmetic_self_cpu_kernel.cc b/mindspore/ccsrc/backend/kernel_compiler/cpu/arithmetic_self_cpu_kernel.cc index 883cc7ff221..f7b4ad7bb6c 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/arithmetic_self_cpu_kernel.cc +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/arithmetic_self_cpu_kernel.cc @@ -76,6 +76,16 @@ void Reciprocal(const T *in, T *out, size_t start, size_t end) { out[i] = static_cast(1.0 / in[i]); } } + +template +void Gelu(const T *in, T *out, size_t start, size_t end) { + for (size_t i = start; i < end; i++) { + T x = in[i]; + auto double_x = static_cast(x); + T tanh_res = (T)std::tanh(0.7978845608 * (double_x + 0.044715 * double_x * double_x * double_x)); + out[i] = x * ((T)1.0 + tanh_res) / (T)2.0; + } +} } // namespace void ArithmeticSelfCPUKernel::InitKernel(const CNodePtr &kernel_node) { @@ -95,6 +105,8 @@ void ArithmeticSelfCPUKernel::InitKernel(const CNodePtr &kernel_node) { operate_type_ = FLOOR; } else if (kernel_name == prim::kPrimReciprocal->name()) { operate_type_ = RECIPROCAL; + } else if (kernel_name == prim::kPrimGelu->name()) { + operate_type_ = GELU; } dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); } @@ -150,6 +162,8 @@ void ArithmeticSelfCPUKernel::LaunchKernel(const std::vector &inputs threads.emplace_back(std::thread(Floor, input, output, start, end)); } else if (operate_type_ == RECIPROCAL) { threads.emplace_back(std::thread(Reciprocal, input, output, start, end)); + } else if (operate_type_ == GELU) { + threads.emplace_back(std::thread(Gelu, input, output, start, end)); } start += once_compute_size; } diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/arithmetic_self_cpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/arithmetic_self_cpu_kernel.h index 51f88f41036..db7c99c90b6 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/arithmetic_self_cpu_kernel.h +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/arithmetic_self_cpu_kernel.h @@ -62,6 +62,8 @@ MS_REG_CPU_KERNEL(Floor, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutput ArithmeticSelfCPUKernel); MS_REG_CPU_KERNEL(Reciprocal, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), ArithmeticSelfCPUKernel); +MS_REG_CPU_KERNEL(Gelu, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), + ArithmeticSelfCPUKernel); } // namespace kernel } // namespace mindspore diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/cpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/cpu_kernel.h index 9844003a52e..5459b93affb 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/cpu_kernel.h +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/cpu_kernel.h @@ -89,6 +89,8 @@ enum OperateType { GREATER, GREATEREQUAL, RECIPROCAL, + GELU, + GELUGRAD, }; class CPUKernel : public kernel::KernelMod { diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/eltwise_grad_cpu_kernel.cc b/mindspore/ccsrc/backend/kernel_compiler/cpu/eltwise_grad_cpu_kernel.cc index a8e53d93807..ee7a47c91a5 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/eltwise_grad_cpu_kernel.cc +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/eltwise_grad_cpu_kernel.cc @@ -78,6 +78,18 @@ void EltWiseGradCPUKernel::TanhGrad(const T *input1, const T *input2, T *out, si } } +template +void EltWiseGradCPUKernel::GeluGrad(const T *input1, const T *input2, T *out, size_t start, size_t end) { + for (size_t i = start; i < end; i++) { + T x = input2[i]; + auto double_x = static_cast(x); + T tanh_res = (T)std::tanh(0.7978845608 * (double_x + 0.044715 * double_x * double_x * double_x)); + T mul_right = (T)(0.7978845608 + 0.1070322244 * double_x * double_x); + T y_res = (((T)1.0 + tanh_res) + x * ((T)1.0 - tanh_res * tanh_res) * mul_right) / (T)2.0; + out[i] = input1[i] * y_res; + } +} + void EltWiseGradCPUKernel::InitKernel(const CNodePtr &kernel_node) { MS_EXCEPTION_IF_NULL(kernel_node); std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node); @@ -93,6 +105,8 @@ void EltWiseGradCPUKernel::InitKernel(const CNodePtr &kernel_node) { operate_type_ = TANHGRAD; } else if (kernel_name == "SqrtGrad") { operate_type_ = SQRTGRAD; + } else if (kernel_name == "GeluGrad") { + operate_type_ = GELUGRAD; } else { MS_LOG(EXCEPTION) << "Not support " << kernel_name; } @@ -172,6 +186,8 @@ void EltWiseGradCPUKernel::LaunchKernel(const std::vector &inputs, c threads.emplace_back(std::thread(&EltWiseGradCPUKernel::TanhGrad, this, input1, input2, output, start, end)); } else if (operate_type_ == SQRTGRAD) { threads.emplace_back(std::thread(&EltWiseGradCPUKernel::SqrtGrad, this, input1, input2, output, start, end)); + } else if (operate_type_ == GELUGRAD) { + threads.emplace_back(std::thread(&EltWiseGradCPUKernel::GeluGrad, this, input1, input2, output, start, end)); } else { MS_LOG(EXCEPTION) << "Not support " << operate_type_; } diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/eltwise_grad_cpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/eltwise_grad_cpu_kernel.h index dcfe0050daf..b67c632654b 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/eltwise_grad_cpu_kernel.h +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/eltwise_grad_cpu_kernel.h @@ -47,6 +47,8 @@ class EltWiseGradCPUKernel : public CPUKernel { void SqrtGrad(const T *input1, const T *input2, T *out, size_t start, size_t end); template void TanhGrad(const T *input1, const T *input2, T *out, size_t start, size_t end); + template + void GeluGrad(const T *input1, const T *input2, T *out, size_t start, size_t end); std::vector input_shape0_; std::vector input_shape1_; std::vector input_element_num0_; @@ -81,6 +83,13 @@ MS_REG_CPU_KERNEL( TanhGrad, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), EltWiseGradCPUKernel); +MS_REG_CPU_KERNEL(GeluGrad, + KernelAttr() + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeFloat32) + .AddOutputAttr(kNumberTypeFloat32), + EltWiseGradCPUKernel); } // namespace kernel } // namespace mindspore diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_cpu_kernel.cc b/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_cpu_kernel.cc new file mode 100644 index 00000000000..353ee5d4bd1 --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_cpu_kernel.cc @@ -0,0 +1,105 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "backend/kernel_compiler/cpu/layer_norm_cpu_kernel.h" +#include "runtime/device/cpu/cpu_device_address.h" + +namespace mindspore { +namespace kernel { +void LayerNormCPUKernel::InitKernel(const CNodePtr &kernel_node) { + CheckParam(kernel_node); + dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); + std::vector x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); + auto begin_norm_axis = AnfAlgo::GetNodeAttr(kernel_node, "begin_norm_axis"); + auto begin_params_axis = AnfAlgo::GetNodeAttr(kernel_node, "begin_params_axis"); + if (begin_norm_axis < 0) { + begin_norm_axis += x_shape.size(); + } + if (begin_params_axis < 0) { + begin_params_axis += x_shape.size(); + } + for (size_t i = 0; i < IntToSize(begin_norm_axis); i++) { + block_num_ *= x_shape[i]; + } + for (size_t i = IntToSize(begin_norm_axis); i < x_shape.size(); i++) { + block_size_ *= x_shape[i]; + } + for (size_t i = IntToSize(begin_params_axis); i < x_shape.size(); i++) { + param_num_ *= x_shape[i]; + } + if (block_num_ <= 0 || block_size_ <= 0) { + MS_LOG(EXCEPTION) << "LayerNormCPUKernel input shape error, input shape: " << x_shape; + } +} + +bool LayerNormCPUKernel::Launch(const std::vector &inputs, const std::vector &, + const std::vector &outputs) { + if (dtype_ == kNumberTypeFloat16) { + LaunchKernel(inputs, outputs); + } else if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat64) { + LaunchKernel(inputs, outputs); + } else { + MS_LOG(EXCEPTION) << "input dtype only support float16, float32, float64"; + } + return true; +} + +template +void LayerNormCPUKernel::LaunchKernel(const std::vector &inputs, const std::vector &outputs) { + size_t f_size = sizeof(T); + if (inputs[1]->size != f_size * param_num_ || inputs[2]->size != f_size * param_num_) { + MS_LOG(EXCEPTION) << "The product of gamma and beta's shape must be " << param_num_; + } + if (outputs[1]->size != f_size * block_num_ || outputs[2]->size != f_size * block_num_) { + MS_LOG(EXCEPTION) << "The product of mean and var's shape must be " << block_num_; + } + auto x = reinterpret_cast(inputs[0]->addr); + auto gamma = reinterpret_cast(inputs[1]->addr); + auto beta = reinterpret_cast(inputs[2]->addr); + auto y = reinterpret_cast(outputs[0]->addr); + auto mean = reinterpret_cast(outputs[1]->addr); + auto var = reinterpret_cast(outputs[2]->addr); + for (size_t i = 0; i < block_num_; ++i) { + T sum = (T)0.0; + T square_sum = (T)0.0; + for (size_t j = i * block_size_; j < (i + 1) * block_size_; ++j) { + sum += x[j]; + square_sum += x[j] * x[j]; + } + T block_mean = sum / block_size_; + T block_var = square_sum / block_size_ - block_mean * block_mean; + for (size_t j = i * block_size_; j < (i + 1) * block_size_; ++j) { + auto param_shift = j % param_num_; + y[j] = (x[j] - block_mean) / (T)std::sqrt(static_cast(block_var) + eps_) * gamma[param_shift] + + beta[param_shift]; + } + mean[i] = block_mean; + var[i] = block_var; + } +} + +void LayerNormCPUKernel::CheckParam(const CNodePtr &kernel_node) { + size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); + if (input_num != 3) { + MS_LOG(EXCEPTION) << "LayerNormCPUKernel needs 3 inputs, but gets " << input_num; + } + size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); + if (output_num != 3) { + MS_LOG(EXCEPTION) << "LayerNormCPUKernel expects 3 output, but gets" << output_num; + } +} +} // namespace kernel +} // namespace mindspore diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_cpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_cpu_kernel.h new file mode 100644 index 00000000000..b5786ad76df --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_cpu_kernel.h @@ -0,0 +1,70 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_LAYER_NORM_CPU_KERNEL_H_ +#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_LAYER_NORM_CPU_KERNEL_H_ +#include +#include +#include +#include "backend/kernel_compiler/cpu/cpu_kernel.h" +#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" + +namespace mindspore { +namespace kernel { +class LayerNormCPUKernel : public CPUKernel { + public: + LayerNormCPUKernel() = default; + ~LayerNormCPUKernel() override = default; + + void InitKernel(const CNodePtr &kernel_node) override; + + bool Launch(const std::vector &inputs, const std::vector &workspace, + const std::vector &outputs) override; + + template + void LaunchKernel(const std::vector &inputs, const std::vector &outputs); + + private: + void CheckParam(const CNodePtr &kernel_node); + TypeId dtype_{kTypeUnknown}; + float eps_{1e-12}; + size_t block_num_{1}; + size_t block_size_{1}; + size_t param_num_{1}; +}; + +MS_REG_CPU_KERNEL(LayerNorm, + KernelAttr() + .AddInputAttr(kNumberTypeFloat16) + .AddInputAttr(kNumberTypeFloat16) + .AddInputAttr(kNumberTypeFloat16) + .AddOutputAttr(kNumberTypeFloat16) + .AddOutputAttr(kNumberTypeFloat16) + .AddOutputAttr(kNumberTypeFloat16), + LayerNormCPUKernel); + +MS_REG_CPU_KERNEL(LayerNorm, + KernelAttr() + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeFloat32) + .AddOutputAttr(kNumberTypeFloat32) + .AddOutputAttr(kNumberTypeFloat32) + .AddOutputAttr(kNumberTypeFloat32), + LayerNormCPUKernel); +} // namespace kernel +} // namespace mindspore +#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_LAYER_NORM_CPU_KERNEL_H_ diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_grad_cpu_kernel.cc b/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_grad_cpu_kernel.cc new file mode 100644 index 00000000000..63cefe0ab92 --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_grad_cpu_kernel.cc @@ -0,0 +1,124 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "backend/kernel_compiler/cpu/layer_norm_grad_cpu_kernel.h" +#include "runtime/device/cpu/cpu_device_address.h" + +namespace mindspore { +namespace kernel { +void LayerNormGradCPUKernel::InitKernel(const CNodePtr &kernel_node) { + CheckParam(kernel_node); + dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); + std::vector x_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); + auto begin_norm_axis = AnfAlgo::GetNodeAttr(kernel_node, "begin_norm_axis"); + auto begin_params_axis = AnfAlgo::GetNodeAttr(kernel_node, "begin_params_axis"); + if (begin_norm_axis < 0) { + begin_norm_axis += x_shape.size(); + } + if (begin_params_axis < 0) { + begin_params_axis += x_shape.size(); + } + for (size_t i = 0; i < IntToSize(begin_norm_axis); i++) { + block_num_ *= x_shape[i]; + } + for (size_t i = IntToSize(begin_norm_axis); i < x_shape.size(); i++) { + block_size_ *= x_shape[i]; + } + for (size_t i = 0; i < IntToSize(begin_params_axis); i++) { + param_size_ *= x_shape[i]; + } + for (size_t i = begin_params_axis; i < x_shape.size(); i++) { + param_num_ *= x_shape[i]; + } + if (block_num_ <= 0 || block_size_ <= 0) { + MS_LOG(EXCEPTION) << "LayerNormGradCPUKernel input shape error, input shape: " << x_shape; + } +} + +bool LayerNormGradCPUKernel::Launch(const std::vector &inputs, + const std::vector &workspace, + const std::vector &outputs) { + if (dtype_ == kNumberTypeFloat16) { + LaunchKernel(inputs, workspace, outputs); + } else if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat64) { + LaunchKernel(inputs, workspace, outputs); + } else { + MS_LOG(EXCEPTION) << "input dtype only support float16, float32, float64"; + } + return true; +} + +template +void LayerNormGradCPUKernel::LaunchKernel(const std::vector &inputs, + const std::vector &workspace, + const std::vector &outputs) { + auto x = reinterpret_cast(inputs[0]->addr); + auto dy = reinterpret_cast(inputs[1]->addr); + auto var = reinterpret_cast(inputs[2]->addr); + auto mean = reinterpret_cast(inputs[3]->addr); + auto gamma = reinterpret_cast(inputs[4]->addr); + auto dx = reinterpret_cast(outputs[0]->addr); + auto dg = reinterpret_cast(outputs[1]->addr); + auto db = reinterpret_cast(outputs[2]->addr); + + for (size_t i = 0; i < param_num_; ++i) { + T dgamma = (T)0.0; + T dbeta = (T)0.0; + for (size_t j = i; j < param_size_ * param_num_; j += param_num_) { + auto norm_shift = static_cast(j / block_size_); + dgamma += dy[j] * (T)std::pow(static_cast(var[norm_shift]) + eps_, -0.5) * (x[j] - mean[norm_shift]); + dbeta += dy[j]; + } + dg[i] = dgamma; + db[i] = dbeta; + } + for (size_t i = 0; i < block_num_; ++i) { + T sum1 = (T)0.0; + T sum2 = (T)0.0; + T sum3 = (T)0.0; + for (size_t j = i * block_size_; j < (i + 1) * block_size_; ++j) { + auto param_shift = j % param_num_; + auto norm_shift = static_cast(j / block_size_); + auto dxm = x[j] - mean[norm_shift]; + auto dyg = dy[j] * gamma[param_shift]; + sum1 += (T)(-0.5) * dyg * dxm * (T)std::pow(static_cast(var[norm_shift]) + eps_, -1.5); + sum2 += dyg; + sum3 += (T)(-2.0) * dxm; + } + for (size_t j = i * block_size_; j < (i + 1) * block_size_; ++j) { + auto param_shift = j % param_num_; + auto norm_shift = static_cast(j / block_size_); + auto var_sqrt = (T)std::pow(static_cast(var[norm_shift]) + eps_, -0.5); + auto dx1 = dy[j] * gamma[param_shift] * var_sqrt; + auto dx2 = sum1 * (T)2.0 / block_size_ * (x[j] - mean[norm_shift]); + auto dx3 = ((T)(-1.0) * var_sqrt * sum2 + ((T)1.0 / block_size_) * sum1 * sum3) * ((T)1.0 / block_size_); + dx[j] = dx1 + dx2 + dx3; + } + } +} + +void LayerNormGradCPUKernel::CheckParam(const CNodePtr &kernel_node) { + size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); + if (input_num != 5) { + MS_LOG(EXCEPTION) << "LayerNormGradCPUKernel needs 5 inputs, but gets " << input_num; + } + size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); + if (output_num != 3) { + MS_LOG(EXCEPTION) << "LayerNormGradCPUKernel expects 3 output, but gets" << output_num; + } +} +} // namespace kernel +} // namespace mindspore diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_grad_cpu_kernel.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_grad_cpu_kernel.h new file mode 100644 index 00000000000..afd9a17369a --- /dev/null +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/layer_norm_grad_cpu_kernel.h @@ -0,0 +1,76 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_LAYER_NORM_GRAD_CPU_KERNEL_H_ +#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_LAYER_NORM_GRAD_CPU_KERNEL_H_ +#include +#include +#include +#include "backend/kernel_compiler/cpu/cpu_kernel.h" +#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" + +namespace mindspore { +namespace kernel { +class LayerNormGradCPUKernel : public CPUKernel { + public: + LayerNormGradCPUKernel() = default; + ~LayerNormGradCPUKernel() override = default; + + void InitKernel(const CNodePtr &kernel_node) override; + + bool Launch(const std::vector &inputs, const std::vector &workspace, + const std::vector &outputs) override; + + template + void LaunchKernel(const std::vector &inputs, const std::vector &workspace, + const std::vector &outputs); + + private: + void CheckParam(const CNodePtr &kernel_node); + TypeId dtype_{kTypeUnknown}; + float eps_{1e-12}; + size_t block_num_{1}; + size_t block_size_{1}; + size_t param_num_{1}; + size_t param_size_{1}; +}; + +MS_REG_CPU_KERNEL(LayerNormGrad, + KernelAttr() + .AddInputAttr(kNumberTypeFloat16) + .AddInputAttr(kNumberTypeFloat16) + .AddInputAttr(kNumberTypeFloat16) + .AddInputAttr(kNumberTypeFloat16) + .AddInputAttr(kNumberTypeFloat16) + .AddOutputAttr(kNumberTypeFloat16) + .AddOutputAttr(kNumberTypeFloat16) + .AddOutputAttr(kNumberTypeFloat16), + LayerNormGradCPUKernel); + +MS_REG_CPU_KERNEL(LayerNormGrad, + KernelAttr() + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeFloat32) + .AddInputAttr(kNumberTypeFloat32) + .AddOutputAttr(kNumberTypeFloat32) + .AddOutputAttr(kNumberTypeFloat32) + .AddOutputAttr(kNumberTypeFloat32), + LayerNormGradCPUKernel); +} // namespace kernel +} // namespace mindspore +#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_LAYER_NORM_GRAD_CPU_KERNEL_H_ diff --git a/tests/st/ops/cpu/test_gelu_grad_op.py b/tests/st/ops/cpu/test_gelu_grad_op.py new file mode 100644 index 00000000000..e54d80131cf --- /dev/null +++ b/tests/st/ops/cpu/test_gelu_grad_op.py @@ -0,0 +1,63 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import numpy as np +import pytest + +import mindspore.context as context +import mindspore.nn as nn +from mindspore import Tensor +from mindspore.ops import composite as C +from mindspore.ops import operations as P + +context.set_context(mode=context.GRAPH_MODE, device_target="CPU") + + +class GeluNet(nn.Cell): + def __init__(self): + super(GeluNet, self).__init__() + self.gelu = P.Gelu() + + def construct(self, x): + return self.gelu(x) + + +class Grad(nn.Cell): + def __init__(self, network): + super(Grad, self).__init__() + self.grad = C.GradOperation(get_all=True, sens_param=True) + self.network = network + + def construct(self, input_data, sens): + gout = self.grad(self.network)(input_data, sens) + return gout + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_gelugrad(): + x_ms = Tensor(np.array([0.58401114, 0.68800163, 0.9760397, 0.14702141, 0.46563736, 0.9607501, + 0.14567593, 0.12261796, 0.37054458, 0.46421242]).astype(np.float32)) + dy_ms = Tensor(np.array([0.5559598, 0.96994054, 0.24770357, 0.34646875, 0.2984393, 0.03287048, + 0.55681044, 0.966908, 0.06015943, 0.6099489]).astype(np.float32)) + + net = GeluNet() + grad = Grad(net) + + output = grad(x_ms, dy_ms) + expect = [0.50963277, 0.9414753, 0.2667653, 0.21358444, 0.25243032, 0.0352667, + 0.34266686, 0.57757664, 0.04707306, 0.51536125] + assert np.allclose(output[0].asnumpy(), expect) diff --git a/tests/st/ops/cpu/test_gelu_op.py b/tests/st/ops/cpu/test_gelu_op.py new file mode 100644 index 00000000000..3ac9e6f01fa --- /dev/null +++ b/tests/st/ops/cpu/test_gelu_op.py @@ -0,0 +1,93 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import numpy as np +import pytest + +import mindspore.context as context +import mindspore.nn as nn +from mindspore import Tensor +from mindspore.ops import operations as P + +context.set_context(mode=context.GRAPH_MODE, device_target="CPU") + + +class GeluNet(nn.Cell): + def __init__(self): + super(GeluNet, self).__init__() + self.gelu = P.Gelu() + + def construct(self, x): + return self.gelu(x) + + +def GeluCompute(x): + return 0.5 * x * (1.0 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x * x * x))) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_gelu_1d(): + x_np = np.random.random((50,)).astype(np.float32) + y_np = GeluCompute(x_np) + + x_ms = Tensor(x_np) + net = GeluNet() + y_ms = net(x_ms) + + assert np.allclose(y_np, y_ms.asnumpy()) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_gelu_2d(): + x_np = np.random.random((50, 40)).astype(np.float32) + y_np = GeluCompute(x_np) + + x_ms = Tensor(x_np) + net = GeluNet() + y_ms = net(x_ms) + + assert np.allclose(y_np, y_ms.asnumpy()) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_gelu_4d(): + x_np = np.random.random((32, 3, 224, 224)).astype(np.float32) + y_np = GeluCompute(x_np) + + x_ms = Tensor(x_np) + net = GeluNet() + y_ms = net(x_ms) + + assert np.allclose(y_np, y_ms.asnumpy()) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_gelu_neg(): + x_np = np.random.random((32, 3, 224, 224)).astype(np.float32) * -1 + y_np = GeluCompute(x_np) + + x_ms = Tensor(x_np) + net = GeluNet() + y_ms = net(x_ms) + + assert np.allclose(y_np, y_ms.asnumpy()) diff --git a/tests/st/ops/cpu/test_layer_norm_grad_op.py b/tests/st/ops/cpu/test_layer_norm_grad_op.py new file mode 100644 index 00000000000..a4ff7e274fb --- /dev/null +++ b/tests/st/ops/cpu/test_layer_norm_grad_op.py @@ -0,0 +1,221 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import numpy as np +import pytest + +import mindspore.context as context +import mindspore.nn as nn +from mindspore import Tensor +from mindspore.ops.operations import _grad_ops as G + +context.set_context(mode=context.GRAPH_MODE, device_target="CPU") + + +class LayerNormGradNet(nn.Cell): + def __init__(self, begin_norm_axis, begin_params_axis): + super(LayerNormGradNet, self).__init__() + self.norm = G.LayerNormGrad(begin_norm_axis, begin_params_axis) + + def construct(self, dy, x, var, mean, gamma): + return self.norm(dy, x, var, mean, gamma) + + +def LayerNormGradReference(x, dy, gamma, epsilon, begin_norm_axis, begin_params_axis): + begin_norm_axis = begin_norm_axis if begin_norm_axis >= 0 else begin_norm_axis + len(x.shape) + begin_params_axis = begin_params_axis if begin_params_axis >= 0 else begin_params_axis + len(x.shape) + + norm_axis = [i for i in range(begin_norm_axis, len(x.shape))] + param_axis = [i for i in range(0, begin_params_axis)] + num = 1 + for i in range(begin_norm_axis, len(x.shape)): + num *= x.shape[i] + + mean = np.mean(x, axis=tuple(norm_axis), keepdims=True) + var = np.var(x, axis=tuple(norm_axis), keepdims=True) + + gamma = gamma.reshape((*((1,) * begin_params_axis), *x.shape[begin_params_axis:])) + dg = np.sum(dy * np.power(var + epsilon, -0.5) * (x - mean), axis=tuple(param_axis), keepdims=True) + db = np.sum(dy, axis=tuple(param_axis), keepdims=True) + + sum1 = np.sum((-0.5) * dy * gamma * (x - mean) * np.power(var + epsilon, -1.5), axis=tuple(norm_axis), + keepdims=True) + sum2 = np.sum(dy * gamma, axis=tuple(norm_axis), keepdims=True) + sum3 = np.sum(-2.0 * (x - mean), axis=tuple(norm_axis), keepdims=True) + + dx1 = dy * gamma * np.power(var + epsilon, -0.5) + dx2 = sum1 * 2.0 / num * (x - mean) + dx3 = ((-1.0) * np.power(var + epsilon, -0.5) * sum2 + (1.0 / num) * sum1 * sum3) * (1.0 / num) + dx = dx1 + dx2 + dx3 + return dx, dg, db, mean, var + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernormgrad0(): + begin_norm_axis = 1 + begin_params_axis = 1 + x_np = np.random.randn(4096, 3072).astype(np.float32) + dy_np = np.random.randn(4096, 3072).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + epsilon = 10e-12 + dx_np, dg_np, db_np, mean_np, var_np = LayerNormGradReference(x_np, dy_np, gamma_np, epsilon, begin_norm_axis, + begin_params_axis) + + dy_ms = Tensor(dy_np) + x_ms = Tensor(x_np) + var_ms = Tensor(var_np) + mean_ms = Tensor(mean_np) + gamma_ms = Tensor(gamma_np) + + net = LayerNormGradNet(begin_norm_axis, begin_params_axis) + dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms) + + assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-4, atol=1e-4) + assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-4, atol=1e-3) + assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-4, atol=1e-3) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernormgrad1(): + begin_norm_axis = 1 + begin_params_axis = 1 + x_np = np.random.randn(640, 768).astype(np.float32) + dy_np = np.random.randn(640, 768).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + epsilon = 10e-12 + dx_np, dg_np, db_np, mean_np, var_np = LayerNormGradReference(x_np, dy_np, gamma_np, epsilon, begin_norm_axis, + begin_params_axis) + + dy_ms = Tensor(dy_np) + x_ms = Tensor(x_np) + var_ms = Tensor(var_np) + mean_ms = Tensor(mean_np) + gamma_ms = Tensor(gamma_np) + + net = LayerNormGradNet(begin_norm_axis, begin_params_axis) + dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms) + + assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-4, atol=1e-4) + assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-4, atol=1e-3) + assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-4, atol=1e-3) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernormgrad2(): + begin_norm_axis = -1 + begin_params_axis = -1 + x_np = np.random.randn(32, 128, 768).astype(np.float32) + dy_np = np.random.randn(32, 128, 768).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + epsilon = 10e-12 + dx_np, dg_np, db_np, mean_np, var_np = LayerNormGradReference(x_np, dy_np, gamma_np, epsilon, begin_norm_axis, + begin_params_axis) + + dy_ms = Tensor(dy_np) + x_ms = Tensor(x_np) + var_ms = Tensor(var_np) + mean_ms = Tensor(mean_np) + gamma_ms = Tensor(gamma_np) + + net = LayerNormGradNet(begin_norm_axis, begin_params_axis) + dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms) + + assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-4, atol=1e-4) + assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-4, atol=1e-3) + assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-4, atol=1e-3) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernormgrad3(): + begin_norm_axis = -1 + begin_params_axis = -1 + x_np = np.random.randn(32, 64).astype(np.float32) + dy_np = np.random.randn(32, 64).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + epsilon = 10e-12 + dx_np, dg_np, db_np, mean_np, var_np = LayerNormGradReference(x_np, dy_np, gamma_np, epsilon, begin_norm_axis, + begin_params_axis) + + dy_ms = Tensor(dy_np) + x_ms = Tensor(x_np) + var_ms = Tensor(var_np) + mean_ms = Tensor(mean_np) + gamma_ms = Tensor(gamma_np) + + net = LayerNormGradNet(begin_norm_axis, begin_params_axis) + dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms) + assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-4, atol=1e-4) + assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-4, atol=1e-3) + assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-4, atol=1e-3) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernormgrad4(): + begin_norm_axis = -1 + begin_params_axis = -1 + x_np = np.random.randn(32, 64).astype(np.float32) + dy_np = np.random.randn(32, 64).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + epsilon = 10e-12 + dx_np, dg_np, db_np, mean_np, var_np = LayerNormGradReference(x_np, dy_np, gamma_np, epsilon, begin_norm_axis, + begin_params_axis) + + dy_ms = Tensor(dy_np) + x_ms = Tensor(x_np) + var_ms = Tensor(var_np) + mean_ms = Tensor(mean_np) + gamma_ms = Tensor(gamma_np) + + net = LayerNormGradNet(begin_norm_axis, begin_params_axis) + dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms) + assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-4, atol=1e-4) + assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-4, atol=1e-3) + assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-4, atol=1e-3) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernormgrad5(): + begin_norm_axis = 2 + begin_params_axis = 1 + x_np = np.random.randn(128, 2, 16, 32).astype(np.float32) + dy_np = np.random.randn(128, 2, 16, 32).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + epsilon = 10e-12 + dx_np, dg_np, db_np, mean_np, var_np = LayerNormGradReference(x_np, dy_np, gamma_np, epsilon, begin_norm_axis, + begin_params_axis) + + dy_ms = Tensor(dy_np) + x_ms = Tensor(x_np) + var_ms = Tensor(var_np) + mean_ms = Tensor(mean_np) + gamma_ms = Tensor(gamma_np) + + net = LayerNormGradNet(begin_norm_axis, begin_params_axis) + dx_ms, dg_ms, db_ms = net(x_ms, dy_ms, var_ms, mean_ms, gamma_ms) + assert np.allclose(dx_ms.asnumpy(), dx_np, rtol=1e-4, atol=1e-4) + assert np.allclose(db_ms.asnumpy(), db_np, rtol=1e-4, atol=1e-3) + assert np.allclose(dg_ms.asnumpy(), dg_np, rtol=1e-4, atol=1e-3) diff --git a/tests/st/ops/cpu/test_layer_norm_op.py b/tests/st/ops/cpu/test_layer_norm_op.py new file mode 100644 index 00000000000..791446c9c39 --- /dev/null +++ b/tests/st/ops/cpu/test_layer_norm_op.py @@ -0,0 +1,199 @@ +# Copyright 2021 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +import numpy as np +import pytest + +import mindspore.context as context +import mindspore.nn as nn +from mindspore import Tensor +from mindspore.ops import operations as P + +context.set_context(mode=context.GRAPH_MODE, device_target="CPU") + + +class LayerNormNet(nn.Cell): + def __init__(self, begin_norm_axis, begin_params_axis): + super(LayerNormNet, self).__init__() + self.norm = P.LayerNorm(begin_norm_axis, begin_params_axis) + + def construct(self, x, gamma, beta): + return self.norm(x, gamma, beta) + + +def LayerNormReference(begin_norm_axis, begin_params_axis, x, gamma, beta): + begin_norm_axis = begin_norm_axis if begin_norm_axis >= 0 else begin_norm_axis + len(x.shape) + begin_params_axis = begin_params_axis if begin_params_axis >= 0 else begin_params_axis + len(x.shape) + + axis = [i for i in range(begin_norm_axis, len(x.shape))] + mean = np.mean(x, axis=tuple(axis), keepdims=True) + var = np.var(x, axis=tuple(axis), keepdims=True) + + gamma = gamma.reshape((*((1,) * begin_params_axis), *x.shape[begin_params_axis:])) + beta = beta.reshape((*((1,) * begin_params_axis), *x.shape[begin_params_axis:])) + y = np.subtract(x, mean) / np.sqrt(var + 1e-12) * gamma + beta + return y, mean, var + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernorm0(): + begin_norm_axis = 1 + begin_params_axis = 1 + x_np = np.random.randn(4096, 3072).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + beta_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + y_np, mean_np, var_np = LayerNormReference(begin_norm_axis, begin_params_axis, x_np, gamma_np, beta_np) + + x_ms = Tensor(x_np) + gamma_ms = Tensor(gamma_np) + beta_ms = Tensor(beta_np) + net = LayerNormNet(begin_norm_axis, begin_params_axis) + y_ms, mean_ms, var_ms = net(x_ms, gamma_ms, beta_ms) + + assert np.allclose(y_ms.asnumpy(), y_np, atol=1e-4) + assert np.allclose(mean_ms.asnumpy(), mean_np, atol=1e-4) + assert np.allclose(var_ms.asnumpy(), var_np, atol=1e-4) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernorm1(): + begin_norm_axis = 1 + begin_params_axis = 1 + x_np = np.random.randn(640, 768).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + beta_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + y_np, mean_np, var_np = LayerNormReference(begin_norm_axis, begin_params_axis, x_np, gamma_np, beta_np) + + x_ms = Tensor(x_np) + gamma_ms = Tensor(gamma_np) + beta_ms = Tensor(beta_np) + net = LayerNormNet(begin_norm_axis, begin_params_axis) + y_ms, mean_ms, var_ms = net(x_ms, gamma_ms, beta_ms) + + assert np.allclose(y_ms.asnumpy(), y_np, rtol=1e-6, atol=1e-4) + assert np.allclose(mean_ms.asnumpy(), mean_np, rtol=1e-6, atol=1e-4) + assert np.allclose(var_ms.asnumpy(), var_np, rtol=1e-6, atol=1e-4) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernorm3d_1(): + begin_norm_axis = -1 + begin_params_axis = -1 + x_np = np.random.randn(32, 128, 768).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + beta_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + y_np, mean_np, var_np = LayerNormReference(begin_norm_axis, begin_params_axis, x_np, gamma_np, beta_np) + + x_ms = Tensor(x_np) + gamma_ms = Tensor(gamma_np) + beta_ms = Tensor(beta_np) + net = LayerNormNet(begin_norm_axis, begin_params_axis) + y_ms, mean_ms, var_ms = net(x_ms, gamma_ms, beta_ms) + + assert np.allclose(y_ms.asnumpy(), y_np, rtol=1e-6, atol=1e-4) + assert np.allclose(mean_ms.asnumpy(), mean_np, rtol=1e-6, atol=1e-4) + assert np.allclose(var_ms.asnumpy(), var_np, rtol=1e-6, atol=1e-4) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernorm3d_2(): + begin_norm_axis = -1 + begin_params_axis = 1 + x_np = np.random.randn(32, 128, 768).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + beta_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + y_np, mean_np, var_np = LayerNormReference(begin_norm_axis, begin_params_axis, x_np, gamma_np, beta_np) + + x_ms = Tensor(x_np) + gamma_ms = Tensor(gamma_np) + beta_ms = Tensor(beta_np) + net = LayerNormNet(begin_norm_axis, begin_params_axis) + y_ms, mean_ms, var_ms = net(x_ms, gamma_ms, beta_ms) + + assert np.allclose(y_ms.asnumpy(), y_np, rtol=1e-6, atol=1e-4) + assert np.allclose(mean_ms.asnumpy(), mean_np, rtol=1e-6, atol=1e-4) + assert np.allclose(var_ms.asnumpy(), var_np, rtol=1e-6, atol=1e-4) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernorm2d_2(): + begin_norm_axis = -1 + begin_params_axis = 1 + x_np = np.random.randn(64, 32).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + beta_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + y_np, mean_np, var_np = LayerNormReference(begin_norm_axis, begin_params_axis, x_np, gamma_np, beta_np) + + x_ms = Tensor(x_np) + gamma_ms = Tensor(gamma_np) + beta_ms = Tensor(beta_np) + net = LayerNormNet(begin_norm_axis, begin_params_axis) + y_ms, mean_ms, var_ms = net(x_ms, gamma_ms, beta_ms) + assert np.allclose(y_ms.asnumpy(), y_np, rtol=1e-6, atol=1e-4) + assert np.allclose(mean_ms.asnumpy(), mean_np, rtol=1e-6, atol=1e-4) + assert np.allclose(var_ms.asnumpy(), var_np, rtol=1e-6, atol=1e-4) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernorm2d_3(): + begin_norm_axis = -1 + begin_params_axis = 1 + x_np = np.random.randn(128, 128).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + beta_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + y_np, mean_np, var_np = LayerNormReference(begin_norm_axis, begin_params_axis, x_np, gamma_np, beta_np) + + x_ms = Tensor(x_np) + gamma_ms = Tensor(gamma_np) + beta_ms = Tensor(beta_np) + net = LayerNormNet(begin_norm_axis, begin_params_axis) + y_ms, mean_ms, var_ms = net(x_ms, gamma_ms, beta_ms) + assert np.allclose(y_ms.asnumpy(), y_np, rtol=1e-6, atol=1e-4) + assert np.allclose(mean_ms.asnumpy(), mean_np, rtol=1e-6, atol=1e-4) + assert np.allclose(var_ms.asnumpy(), var_np, rtol=1e-6, atol=1e-4) + + +@pytest.mark.level0 +@pytest.mark.platform_x86_cpu +@pytest.mark.env_onecard +def test_layernorm2d_4(): + begin_norm_axis = 2 + begin_params_axis = 1 + np.random.seed(42) + x_np = np.random.randn(128, 2, 16, 32).astype(np.float32) + gamma_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + beta_np = np.random.randn(*x_np.shape[begin_params_axis:]).astype(np.float32) + y_np, mean_np, var_np = LayerNormReference(begin_norm_axis, begin_params_axis, x_np, gamma_np, beta_np) + + x_ms = Tensor(x_np) + gamma_ms = Tensor(gamma_np) + beta_ms = Tensor(beta_np) + net = LayerNormNet(begin_norm_axis, begin_params_axis) + y_ms, mean_ms, var_ms = net(x_ms, gamma_ms, beta_ms) + assert np.allclose(y_ms.asnumpy(), y_np, rtol=1e-6, atol=1e-4) + assert np.allclose(mean_ms.asnumpy(), mean_np, rtol=1e-6, atol=1e-4) + assert np.allclose(var_ms.asnumpy(), var_np, rtol=1e-6, atol=1e-4)