!16852 ssd_mobilenetV2_master_PR

Merge pull request !16852 from 陈宇凡/ssd_mobilenetV2_master
This commit is contained in:
i-robot 2021-06-09 10:12:52 +08:00 committed by Gitee
commit 3434a6f2c6
15 changed files with 2305 additions and 0 deletions

View File

@ -0,0 +1,324 @@
# Contents
- [Contents](#contents)
- [SSD Description](#ssd-description)
- [Model Architecture](#model-architecture)
- [Dataset](#dataset)
- [Environment Requirements](#environment-requirements)
- [Quick Start](#quick-start)
- [Prepare the model](#prepare-the-model)
- [Run the scripts](#run-the-scripts)
- [Script Description](#script-description)
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Training Process](#training-process)
- [Training on Ascend](#training-on-ascend)
- [Evaluation Process](#evaluation-process)
- [Evaluation on Ascend](#evaluation-on-ascend)
- [Model Description](#model-description)
- [Performance](#performance)
- [Evaluation Performance](#evaluation-performance)
- [Inference Performance](#inference-performance)
- [Description of Random Situation](#description-of-random-situation)
- [ModelZoo Homepage](#modelzoo-homepage)
## [SSD Description](#contents)
SSD discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape.Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes.
[Paper](https://arxiv.org/abs/1512.02325): Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, Alexander C. Berg.European Conference on Computer Vision (ECCV), 2016 (In press).
## [Model Architecture](#contents)
The SSD approach is based on a feed-forward convolutional network that produces a fixed-size collection of bounding boxes and scores for the presence of object class instances in those boxes, followed by a non-maximum suppression step to produce the final detections. The early network layers are based on a standard architecture used for high quality image classification, which is called the base network. Then add auxiliary structure to the network to produce detections.
- **ssd320**, reference from the paper. Using mobilenetv2 as backbone and the same bbox predictor as the paper present.
## [Dataset](#contents)
Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
Dataset used: [COCO2017](<http://images.cocodataset.org/>)
- Dataset size19G
- Train18G118000 images
- Val1G5000 images
- Annotations241Minstancescaptionsperson_keypoints etc
- Data formatimage and json files
- NoteData will be processed in dataset.py
## [Environment Requirements](#contents)
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download the dataset COCO2017.
- We use COCO2017 as training dataset in this example by default, and you can also use your own datasets.
First, install Cython ,pycocotool and opencv to process data and to get evaluation result.
```shell
pip install Cython
pip install pycocotools
pip install opencv-python
```
1. If coco dataset is used. **Select dataset to coco when run script.**
Change the `coco_root` and other settings you need in `src/config.py`. The directory structure is as follows:
```shell
.
└─coco_dataset
├─annotations
├─instance_train2017.json
└─instance_val2017.json
├─val2017
└─train2017
```
2. If VOC dataset is used. **Select dataset to voc when run script.**
Change `classes`, `num_classes`, `voc_json` and `voc_root` in `src/config.py`. `voc_json` is the path of json file with coco format for evaluation, `voc_root` is the path of VOC dataset, the directory structure is as follows:
```shell
.
└─voc_dataset
└─train
├─0001.jpg
└─0001.xml
...
├─xxxx.jpg
└─xxxx.xml
└─eval
├─0001.jpg
└─0001.xml
...
├─xxxx.jpg
└─xxxx.xml
```
3. If your own dataset is used. **Select dataset to other when run script.**
Organize the dataset information into a TXT file, each row in the file is as follows:
```shell
train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
```
Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class infomations of the format [xmin,ymin,xmax,ymax,class]. We read image from an image path joined by the `image_dir`(dataset directory) and the relative path in `anno_path`(the TXT file path), `image_dir` and `anno_path` are setting in `src/config.py`.
## [Quick Start](#contents)
### Prepare the model
Change the dataset config in the config.
### Run the scripts
After installing MindSpore via the official website, you can start training and evaluation as follows:
- running on Ascend
```shell
# distributed training on Ascend
sh scripts/run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] [RANK_TABLE_FILE]
# run eval on Ascend
sh scripts/run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
```
## [Script Description](#contents)
### [Script and Sample Code](#contents)
```shell
.
└─ cv
└─ ssd
├─ README.md # descriptions about SSD
├─ scripts
├─ run_distribute_train.sh # shell script for distributed on ascend
├─ run_eval.sh # shell script for eval on ascend
├─ src
├─ __init__.py # init file
├─ box_utils.py # bbox utils
├─ eval_utils.py # metrics utils
├─ config.py # total config
├─ dataset.py # create dataset and process dataset
├─ init_params.py # parameters utils
├─ lr_schedule.py # learning ratio generator
└─ ssd.py # ssd architecture
├─ eval.py # eval scripts
├─ train.py # train scripts
```
### [Script Parameters](#contents)
```shell
Major parameters in train.py and config.py as follows:
"device_num": 1 # Use device nums
"lr": 0.05 # Learning rate init value
"dataset": coco # Dataset name
"epoch_size": 500 # Epoch size
"batch_size": 32 # Batch size of input tensor
"pre_trained": None # Pretrained checkpoint file path
"pre_trained_epoch_size": 0 # Pretrained epoch size
"save_checkpoint_epochs": 10 # The epoch interval between two checkpoints. By default, the checkpoint will be saved per 10 epochs
"loss_scale": 1024 # Loss scale
"filter_weight": False # Load parameters in head layer or not. If the class numbers of train dataset is different from the class numbers in pre_trained checkpoint, please set True.
"freeze_layer": "none" # Freeze the backbone parameters or not, support none and backbone.
"class_num": 81 # Dataset class number
"image_shape": [320, 320] # Image height and width used as input to the model
"mindrecord_dir": "/data/MindRecord_COCO" # MindRecord path
"coco_root": "/data/coco2017" # COCO2017 dataset path
"voc_root": "/data/voc_dataset" # VOC original dataset path
"voc_json": "annotations/voc_instances_val.json" # is the path of json file with coco format for evaluation
"image_dir": "" # Other dataset image path, if coco or voc used, it will be useless
"anno_path": "" # Other dataset annotation path, if coco or voc used, it will be useless
```
### [Training Process](#contents)
To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/convert_dataset.html) files by `coco_root`(coco dataset), `voc_root`(voc dataset) or `image_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.**
#### Training on Ascend
- Distribute mode
```shell
sh scripts/run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] [RANK_TABLE_FILE] [PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)
```
We need five or seven parameters for this scripts.
- `DEVICE_NUM`: the device number for distributed train.
- `EPOCH_NUM`: epoch num for distributed train.
- `LR`: learning rate init value for distributed train.
- `DATASET`the dataset mode for distributed train.
- `RANK_TABLE_FILE :` the path of [rank_table.json](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools), it is better to use absolute path.
- `PRE_TRAINED :` the path of pretrained checkpoint file, it is better to use absolute path.
- `PRE_TRAINED_EPOCH_SIZE :` the epoch num of pretrained.
Training result will be stored in the current path, whose folder name begins with "LOG". Under this, you can find checkpoint file together with result like the followings in log
```shell
epoch: 1 step: 458, loss is 2.329789
epoch time: 522433.474 ms, per step time: 1140.684 ms
epoch: 2 step: 458, loss is 2.1185513
epoch time: 32531.105 ms, per step time: 71.029 ms
epoch: 3 step: 458, loss is 1.9073256
epoch time: 32643.957 ms, per step time: 71.275 ms
...
epoch: 498 step: 458, loss is 0.6682728
epoch time: 31163.108 ms, per step time: 68.042 ms
epoch: 499 step: 458, loss is 0.8796004
epoch time: 31107.760 ms, per step time: 67.921 ms
epoch: 500 step: 458, loss is 0.7718496
epoch time: 32848.501 ms, per step time: 71.722 ms
```
- single mode
```shell
sh scripts/run_1p_train.sh [DEVICE_ID] [EPOCH_SIZE] [LR] [DATASET] [PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)
```
We need five or seven parameters for this scripts.
- `DEVICE_ID`: the device ID for train.
- `EPOCH_NUM`: epoch num for distributed train.
- `LR`: learning rate init value for distributed train.
- `DATASET`the dataset mode for distributed train.
- `PRE_TRAINED :` the path of pretrained checkpoint file, it is better to use absolute path.
- `PRE_TRAINED_EPOCH_SIZE :` the epoch num of pretrained.
Training result will be stored in the current path, whose folder name begins with "LOG". Under this, you can find checkpoint file together with result like the followings in log
```shell
epoch: 1 step: 3664, loss is 2.1746433
epoch time: 383006.976 ms, per step time: 104.532 ms
epoch: 2 step: 3664, loss is 2.1719098
epoch time: 227088.618 ms, per step time: 61.978 ms
```
### [Evaluation Process](#contents)
#### Evaluation on Ascend
```shell
sh scripts/run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
```
We need two parameters for this scripts.
- `DATASET`the dataset mode of evaluation dataset.
- `CHECKPOINT_PATH`: the absolute path for checkpoint file.
- `DEVICE_ID`: the device id for eval.
> checkpoint can be produced in training process.
Inference result will be stored in the example path, whose folder name begins with "eval". Under this, you can find result like the followings in log.
```shell
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.253
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.415
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.257
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.045
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.222
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.453
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.259
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.405
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.438
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.131
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.457
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.704
========================================
mAP: 0.2527925497483538
```
## [Model Description](#contents)
### [Performance](#contents)
#### Evaluation Performance
| Parameters | Ascend |
| ------------------- | ------------------- |
| Model Version | SSD mobielnetV2 |
| Resource | Ascend 910 CPU 2.60GHz192coresMemory755G|
| uploaded Date | 03/12/2021 (month/day/year) |
| MindSpore Version | 1.1.1 |
| Dataset | COCO2017 |
| Training Parameters | epoch = 500, batch_size = 32 |
| Optimizer | Momentum |
| Loss Function | Sigmoid Cross Entropy,SmoothL1Loss |
| Speed | 8pcs: 80ms/step |
| Total time | 8pcs: 4.67hours |
| Scripts | <https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/SSD_mobielnetV2> |
#### Inference Performance
| Parameters | Ascend |
| ------------------- | --------------------------- |
| Model Version | SSD mobilenetV2 |
| Resource | Ascend 910 |
| Uploaded Date | 03/12/2021 (month/day/year) |
| MindSpore Version | 1.1.1 |
| Dataset | COCO2017 |
| batch_size | 1 |
| outputs | mAP |
| Accuracy | IoU=0.50: 25.28% |
## [Description of Random Situation](#contents)
In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
## [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

View File

@ -0,0 +1,121 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# less required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluation for SSD"""
import ast
import os
import argparse
import time
import numpy as np
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.ssd import SSD320, SsdInferWithDecoder, ssd_mobilenet_v2
from src.dataset import create_ssd_dataset, create_mindrecord
from src.config import config
from src.eval_utils import metrics
from src.box_utils import default_boxes
def ssd_eval(dataset_path, ckpt_path, anno_json):
"""SSD evaluation."""
batch_size = 1
ds = create_ssd_dataset(dataset_path, batch_size=batch_size, repeat_num=1,
is_training=False, use_multiprocessing=False)
net = SSD320(ssd_mobilenet_v2(), config, is_training=False)
net = SsdInferWithDecoder(net, Tensor(default_boxes), config)
print("Load Checkpoint!")
param_dict = load_checkpoint(ckpt_path)
net.init_parameters_data()
load_param_into_net(net, param_dict)
net.set_train(False)
i = batch_size
total = ds.get_dataset_size() * batch_size
start = time.time()
pred_data = []
print("\n========================================\n")
print("total images num: ", total)
print("Processing, please wait a moment.")
for data in ds.create_dict_iterator(output_numpy=True, num_epochs=1):
img_id = data['img_id']
img_np = data['image']
image_shape = data['image_shape']
output = net(Tensor(img_np))
for batch_idx in range(img_np.shape[0]):
pred_data.append({"boxes": output[0].asnumpy()[batch_idx],
"box_scores": output[1].asnumpy()[batch_idx],
"img_id": int(np.squeeze(img_id[batch_idx])),
"image_shape": image_shape[batch_idx]})
percent = round(i / total * 100., 2)
print(f' {str(percent)} [{i}/{total}]', end='\r')
i += batch_size
cost_time = int((time.time() - start) * 1000)
print(f' 100% [{total}/{total}] cost {cost_time} ms')
mAP = metrics(pred_data, anno_json)
print("\n========================================\n")
print(f"mAP: {mAP}")
def get_eval_args():
"""set arguments"""
parser = argparse.ArgumentParser(description='SSD evaluation')
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
parser.add_argument("--checkpoint_path", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"),
help="run platform, support Ascend.")
parser.add_argument('--modelarts_mode', type=ast.literal_eval, default=False,
help='train on modelarts or not, default is False')
parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
parser.add_argument('--train_url', type=str, default=None, help='Train output path')
parser.add_argument('--mindrecord_mode', type=str, default="mindrecord", choices=("coco", "mindrecord"),
help='type of data, default is mindrecord')
return parser.parse_args()
if __name__ == '__main__':
args_opt = get_eval_args()
if args_opt.modelarts_mode:
import moxing as mox
device_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=device_id)
config.coco_root = os.path.join(config.coco_root, str(device_id))
config.mindrecord_dir = os.path.join(config.mindrecord_dir, str(device_id))
checkpoint_path = "/cache/ckpt/"
checkpoint_path = os.path.join(checkpoint_path, str(device_id))
mox.file.copy_parallel(args_opt.checkpoint_path, checkpoint_path)
if args_opt.mindrecord_mode == "mindrecord":
mox.file.copy_parallel(args_opt.data_url, config.mindrecord_dir)
else:
mox.file.copy_parallel(args_opt.data_url, config.coco_root)
else:
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=args_opt.device_id)
mindrecord_file = create_mindrecord(args_opt.dataset, "ssd_eval.mindrecord", False)
if args_opt.dataset == "coco":
json_path = os.path.join(config.coco_root, config.instances_set.format(config.val_data_type))
elif args_opt.dataset == "voc":
json_path = os.path.join(config.voc_root, config.voc_json)
else:
raise ValueError('SSD eval only support dataset mode is coco and voc!')
print("Start Eval!")
if args_opt.modelarts_mode:
checkpoint_path = checkpoint_path + '/ssd-500_458.ckpt'
ssd_eval(mindrecord_file, checkpoint_path, json_path)
mox.file.copy_parallel(config.mindrecord_dir, args_opt.train_url)
else:
ssd_eval(mindrecord_file, args_opt.checkpoint_path, json_path)

View File

@ -0,0 +1,50 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""export"""
import argparse
import numpy as np
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
import mindspore.common.dtype as mstype
from src.ssd import SSD320, SsdInferWithDecoder, ssd_mobilenet_v2
from src.config import config
from src.box_utils import default_boxes
parser = argparse.ArgumentParser(description='SSD export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="ssd", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
parser.add_argument("--device_target", type=str, choices=["Ascend"], default="Ascend",
help="device target")
args = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
if __name__ == '__main__':
net = SSD320(ssd_mobilenet_v2(), config, is_training=False)
net = SsdInferWithDecoder(net, Tensor(default_boxes), config)
param_dict = load_checkpoint(args.ckpt_file)
net.init_parameters_data()
load_param_into_net(net, param_dict)
net.set_train(False)
input_shp = [args.batch_size, 3] + config.img_shape
input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp), mstype.float32)
export(net, input_array, file_name=args.file_name, file_format=args.file_format)

View File

@ -0,0 +1,73 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
echo "=============================================================================================================="
echo "Please run the script as: "
echo "sh run_1p_train.sh DEVICE_ID EPOCH_SIZE LR DATASET RANK_TABLE_FILE PRE_TRAINED PRE_TRAINED_EPOCH_SIZE"
echo "for example: sh run_1p_train.sh 8 500 0.2 coco /opt/ssd-300.ckpt(optional) 200(optional)"
echo "It is better to use absolute path."
echo "================================================================================================================="
if [ $# != 4 ] && [ $# != 6 ]
then
echo "Usage: sh run_1p_train.sh [DEVICE_ID] [EPOCH_SIZE] [LR] [DATASET] \
[PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)"
exit 1
fi
# Before start 1pc train, first create mindrecord files.
BASE_PATH=$(cd "`dirname $0`" || exit; pwd)
cd $BASE_PATH/../ || exit
python train.py --only_create_dataset=True --dataset=$4
echo "After running the script, the network runs in the background. The log will be generated in LOGx/log.txt"
DEVICE_ID=$1
EPOCH_SIZE=$2
LR=$3
DATASET=$4
PRE_TRAINED=$5
PRE_TRAINED_EPOCH_SIZE=$6
rm -rf LOG$1
mkdir ./LOG$1
cp ./*.py ./LOG$1
cp -r ./src ./LOG$1
cp -r ./scripts ./LOG$1
cd ./LOG$1 || exit
echo "start training for device $1"
env > env.log
if [ $# == 4 ]
then
python train.py \
--lr=$LR \
--dataset=$DATASET \
--device_id=$DEVICE_ID \
--epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
fi
if [ $# == 6 ]
then
python train.py \
--lr=$LR \
--dataset=$DATASET \
--device_id=$DEVICE_ID \
--pre_trained=$PRE_TRAINED \
--pre_trained_epoch_size=$PRE_TRAINED_EPOCH_SIZE \
--epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
fi
cd ../

View File

@ -0,0 +1,83 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
echo "=============================================================================================================="
echo "Please run the script as: "
echo "sh run_distribute_train.sh DEVICE_NUM EPOCH_SIZE LR DATASET RANK_TABLE_FILE PRE_TRAINED PRE_TRAINED_EPOCH_SIZE"
echo "for example: sh run_distribute_train.sh 8 500 0.2 coco /data/hccl.json /opt/ssd-300.ckpt(optional) 200(optional)"
echo "It is better to use absolute path."
echo "================================================================================================================="
if [ $# != 5 ] && [ $# != 7 ]
then
echo "Usage: sh run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] \
[RANK_TABLE_FILE] [PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)"
exit 1
fi
# Before start distribute train, first create mindrecord files.
BASE_PATH=$(cd "`dirname $0`" || exit; pwd)
cd $BASE_PATH/../ || exit
python train.py --only_create_dataset=True --dataset=$4
echo "After running the script, the network runs in the background. The log will be generated in LOGx/log.txt"
export RANK_SIZE=$1
EPOCH_SIZE=$2
LR=$3
DATASET=$4
PRE_TRAINED=$6
PRE_TRAINED_EPOCH_SIZE=$7
export RANK_TABLE_FILE=$5
for((i=0;i<RANK_SIZE;i++))
do
export DEVICE_ID=$i
rm -rf LOG$i
mkdir ./LOG$i
cp ./*.py ./LOG$i
cp -r ./src ./LOG$i
cp -r ./scripts ./LOG$i
cd ./LOG$i || exit
export RANK_ID=$i
echo "start training for rank $i, device $DEVICE_ID"
env > env.log
if [ $# == 5 ]
then
python train.py \
--distribute=True \
--lr=$LR \
--dataset=$DATASET \
--device_num=$RANK_SIZE \
--device_id=$DEVICE_ID \
--epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
fi
if [ $# == 7 ]
then
python train.py \
--distribute=True \
--lr=$LR \
--dataset=$DATASET \
--device_num=$RANK_SIZE \
--device_id=$DEVICE_ID \
--pre_trained=$PRE_TRAINED \
--pre_trained_epoch_size=$PRE_TRAINED_EPOCH_SIZE \
--epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
fi
cd ../
done

View File

@ -0,0 +1,65 @@
#!/bin/bash
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# != 3 ]
then
echo "Usage: sh run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
DATASET=$1
CHECKPOINT_PATH=$(get_real_path $2)
echo $DATASET
echo $CHECKPOINT_PATH
if [ ! -f $CHECKPOINT_PATH ]
then
echo "error: CHECKPOINT_PATH=$PATH2 is not a file"
exit 1
fi
export DEVICE_NUM=1
export DEVICE_ID=$3
export RANK_SIZE=$DEVICE_NUM
export RANK_ID=0
BASE_PATH=$(cd "`dirname $0`" || exit; pwd)
cd $BASE_PATH/../ || exit
if [ -d "eval$3" ];
then
rm -rf ./eval$3
fi
mkdir ./eval$3
cp ./*.py ./eval$3
cp -r ./src ./eval$3
cd ./eval$3 || exit
env > env.log
echo "start inferring for device $DEVICE_ID"
python eval.py \
--dataset=$DATASET \
--checkpoint_path=$CHECKPOINT_PATH \
--device_id=$3 > log.txt 2>&1 &
cd ..

View File

@ -0,0 +1,164 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Bbox utils"""
import math
import itertools as it
import numpy as np
from .config import config
class GeneratDefaultBoxes():
"""
Generate Default boxes for SSD, follows the order of (W, H, archor_sizes).
`self.default_boxes` has a shape of [archor_sizes, H, W, 4], the last dimension is [y, x, h, w].
`self.default_boxes_tlbr` has a shape as `self.default_boxes`, the last dimension is [y1, x1, y2, x2].
"""
def __init__(self):
fk = config.img_shape[0] / np.array(config.steps)
scale_rate = (config.max_scale - config.min_scale) / (len(config.num_default) - 1)
scales = [config.min_scale + scale_rate * i for i in range(len(config.num_default))] + [1.0]
self.default_boxes = []
for idex, feature_size in enumerate(config.feature_size):
sk1 = scales[idex]
sk2 = scales[idex + 1]
sk3 = math.sqrt(sk1 * sk2)
if idex == 0 and not config.aspect_ratios[idex]:
w, h = sk1 * math.sqrt(2), sk1 / math.sqrt(2)
all_sizes = [(0.1, 0.1), (w, h), (h, w)]
else:
all_sizes = [(sk1, sk1)]
for aspect_ratio in config.aspect_ratios[idex]:
w, h = sk1 * math.sqrt(aspect_ratio), sk1 / math.sqrt(aspect_ratio)
all_sizes.append((w, h))
all_sizes.append((h, w))
all_sizes.append((sk3, sk3))
assert len(all_sizes) == config.num_default[idex]
for i, j in it.product(range(feature_size), repeat=2):
for w, h in all_sizes:
cx, cy = (j + 0.5) / fk[idex], (i + 0.5) / fk[idex]
self.default_boxes.append([cy, cx, h, w])
def to_tlbr(cy, cx, h, w):
return cy - h / 2, cx - w / 2, cy + h / 2, cx + w / 2
# For IoU calculation
self.default_boxes_tlbr = np.array(tuple(to_tlbr(*i) for i in self.default_boxes), dtype='float32')
self.default_boxes = np.array(self.default_boxes, dtype='float32')
default_boxes_tlbr = GeneratDefaultBoxes().default_boxes_tlbr
default_boxes = GeneratDefaultBoxes().default_boxes
y1, x1, y2, x2 = np.split(default_boxes_tlbr[:, :4], 4, axis=-1)
vol_anchors = (x2 - x1) * (y2 - y1)
matching_threshold = config.match_threshold
def ssd_bboxes_encode(boxes):
"""
Labels anchors with ground truth inputs.
Args:
boxex: ground truth with shape [N, 5], for each row, it stores [y, x, h, w, cls].
Returns:
gt_loc: location ground truth with shape [num_anchors, 4].
gt_label: class ground truth with shape [num_anchors, 1].
num_matched_boxes: number of positives in an image.
"""
def jaccard_with_anchors(bbox):
"""Compute jaccard score a box and the anchors."""
# Intersection bbox and volume.
ymin = np.maximum(y1, bbox[0])
xmin = np.maximum(x1, bbox[1])
ymax = np.minimum(y2, bbox[2])
xmax = np.minimum(x2, bbox[3])
w = np.maximum(xmax - xmin, 0.)
h = np.maximum(ymax - ymin, 0.)
# Volumes.
inter_vol = h * w
union_vol = vol_anchors + (bbox[2] - bbox[0]) * (bbox[3] - bbox[1]) - inter_vol
jaccard = inter_vol / union_vol
return np.squeeze(jaccard)
pre_scores = np.zeros((config.num_ssd_boxes), dtype=np.float32)
t_boxes = np.zeros((config.num_ssd_boxes, 4), dtype=np.float32)
t_label = np.zeros((config.num_ssd_boxes), dtype=np.int64)
for bbox in boxes:
label = int(bbox[4])
scores = jaccard_with_anchors(bbox)
idx = np.argmax(scores)
scores[idx] = 2.0
mask = (scores > matching_threshold)
mask = mask & (scores > pre_scores)
pre_scores = np.maximum(pre_scores, scores * mask)
t_label = mask * label + (1 - mask) * t_label
for i in range(4):
t_boxes[:, i] = mask * bbox[i] + (1 - mask) * t_boxes[:, i]
index = np.nonzero(t_label)
# Transform to tlbr.
bboxes = np.zeros((config.num_ssd_boxes, 4), dtype=np.float32)
bboxes[:, [0, 1]] = (t_boxes[:, [0, 1]] + t_boxes[:, [2, 3]]) / 2
bboxes[:, [2, 3]] = t_boxes[:, [2, 3]] - t_boxes[:, [0, 1]]
# Encode features.
bboxes_t = bboxes[index]
default_boxes_t = default_boxes[index]
bboxes_t[:, :2] = (bboxes_t[:, :2] - default_boxes_t[:, :2]) / (default_boxes_t[:, 2:] * config.prior_scaling[0])
tmp = np.maximum(bboxes_t[:, 2:4] / default_boxes_t[:, 2:4], 0.000001)
bboxes_t[:, 2:4] = np.log(tmp) / config.prior_scaling[1]
bboxes[index] = bboxes_t
num_match = np.array([len(np.nonzero(t_label)[0])], dtype=np.int32)
return bboxes, t_label.astype(np.int32), num_match
def ssd_bboxes_decode(boxes):
"""Decode predict boxes to [y, x, h, w]"""
boxes_t = boxes.copy()
default_boxes_t = default_boxes.copy()
boxes_t[:, :2] = boxes_t[:, :2] * config.prior_scaling[0] * default_boxes_t[:, 2:] + default_boxes_t[:, :2]
boxes_t[:, 2:4] = np.exp(boxes_t[:, 2:4] * config.prior_scaling[1]) * default_boxes_t[:, 2:4]
bboxes = np.zeros((len(boxes_t), 4), dtype=np.float32)
bboxes[:, [0, 1]] = boxes_t[:, [0, 1]] - boxes_t[:, [2, 3]] / 2
bboxes[:, [2, 3]] = boxes_t[:, [0, 1]] + boxes_t[:, [2, 3]] / 2
return np.clip(bboxes, 0, 1)
def intersect(box_a, box_b):
"""Compute the intersect of two sets of boxes."""
max_yx = np.minimum(box_a[:, 2:4], box_b[2:4])
min_yx = np.maximum(box_a[:, :2], box_b[:2])
inter = np.clip((max_yx - min_yx), a_min=0, a_max=np.inf)
return inter[:, 0] * inter[:, 1]
def jaccard_numpy(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes."""
inter = intersect(box_a, box_b)
area_a = ((box_a[:, 2] - box_a[:, 0]) *
(box_a[:, 3] - box_a[:, 1]))
area_b = ((box_b[2] - box_b[0]) *
(box_b[3] - box_b[1]))
union = area_a + area_b - inter
return inter / union

View File

@ -0,0 +1,82 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#" ============================================================================
"""Config parameters for SSD models."""
from easydict import EasyDict as ed
config = ed({
"model": "ssd320",
"img_shape": [320, 320],
"num_ssd_boxes": 2034,
"neg_pre_positive": 3,
"match_threshold": 0.5,
"nms_threshold": 0.6,
"min_score": 0.1,
"max_boxes": 100,
# learing rate settings
"lr_init": 0.001,
"lr_end_rate": 0.001,
"warmup_epochs": 2,
"momentum": 0.9,
"weight_decay": 1.5e-4,
# network
"num_default": [3, 6, 6, 6, 6, 6],
"extras_in_channels": [256, 576, 1280, 512, 256, 256],
"extras_out_channels": [576, 1280, 512, 256, 256, 128],
"extras_strides": [1, 1, 2, 2, 2, 2],
"extras_ratio": [0.2, 0.2, 0.2, 0.25, 0.5, 0.25],
"feature_size": [20, 10, 5, 3, 2, 1],
"min_scale": 0.2,
"max_scale": 0.95,
"aspect_ratios": [(), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3)],
"steps": (16, 32, 64, 108, 160, 320),
"prior_scaling": (0.1, 0.2),
"gamma": 2.0,
"alpha": 0.75,
# `mindrecord_dir` and `coco_root` are better to use absolute path.
"feature_extractor_base_param": "",
"mindrecord_dir": "/cache/MindRecord_COCO",
"coco_root": "/cache/coco2017",
"train_data_type": "train2017",
"val_data_type": "val2017",
"instances_set": "annotations/instances_{}.json",
"classes": ('background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup',
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush'),
"num_classes": 81,
# The annotation.json position of voc validation dataset.
"voc_json": "annotations/voc_instances_val.json",
# voc original dataset.
"voc_root": "/data/voc_dataset",
# if coco or voc used, `image_dir` and `anno_path` are useless.
"image_dir": "",
"anno_path": ""
})

View File

@ -0,0 +1,454 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SSD dataset"""
from __future__ import division
import os
import json
import xml.etree.ElementTree as et
import numpy as np
import cv2
import mindspore.dataset as de
import mindspore.dataset.vision.c_transforms as C
from mindspore.mindrecord import FileWriter
from .config import config
from .box_utils import jaccard_numpy, ssd_bboxes_encode
def _rand(a=0., b=1.):
"""Generate random."""
return np.random.rand() * (b - a) + a
def get_imageId_from_fileName(filename, id_iter):
"""Get imageID from fileName if fileName is int, else return id_iter."""
filename = os.path.splitext(filename)[0]
if filename.isdigit():
return int(filename)
return id_iter
def random_sample_crop(image, boxes):
"""Random Crop the image and boxes"""
height, width, _ = image.shape
min_iou = np.random.choice([None, 0.1, 0.3, 0.5, 0.7, 0.9])
if min_iou is None:
return image, boxes
# max trails (50)
for _ in range(50):
image_t = image
w = _rand(0.3, 1.0) * width
h = _rand(0.3, 1.0) * height
# aspect ratio constraint b/t .5 & 2
if h / w < 0.5 or h / w > 2:
continue
left = _rand() * (width - w)
top = _rand() * (height - h)
rect = np.array([int(top), int(left), int(top + h), int(left + w)])
overlap = jaccard_numpy(boxes, rect)
# dropout some boxes
drop_mask = overlap > 0
if not drop_mask.any():
continue
if overlap[drop_mask].min() < min_iou and overlap[drop_mask].max() > (min_iou + 0.2):
continue
image_t = image_t[rect[0]:rect[2], rect[1]:rect[3], :]
centers = (boxes[:, :2] + boxes[:, 2:4]) / 2.0
m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1])
m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1])
# mask in that both m1 and m2 are true
mask = m1 * m2 * drop_mask
# have any valid boxes? try again if not
if not mask.any():
continue
# take only matching gt boxes
boxes_t = boxes[mask, :].copy()
boxes_t[:, :2] = np.maximum(boxes_t[:, :2], rect[:2])
boxes_t[:, :2] -= rect[:2]
boxes_t[:, 2:4] = np.minimum(boxes_t[:, 2:4], rect[2:4])
boxes_t[:, 2:4] -= rect[:2]
return image_t, boxes_t
return image, boxes
def preprocess_fn(img_id, image, box, is_training):
"""Preprocess function for dataset."""
cv2.setNumThreads(2)
def _infer_data(image, input_shape):
img_h, img_w, _ = image.shape
input_h, input_w = input_shape
image = cv2.resize(image, (input_w, input_h))
# When the channels of image is 1
if len(image.shape) == 2:
image = np.expand_dims(image, axis=-1)
image = np.concatenate([image, image, image], axis=-1)
return img_id, image, np.array((img_h, img_w), np.float32)
def _data_aug(image, box, is_training, image_size=(300, 300)):
"""Data augmentation function."""
ih, iw, _ = image.shape
h, w = image_size
if not is_training:
return _infer_data(image, image_size)
# Random crop
box = box.astype(np.float32)
image, box = random_sample_crop(image, box)
ih, iw, _ = image.shape
# Resize image
image = cv2.resize(image, (w, h))
# Flip image or not
flip = _rand() < .5
if flip:
image = cv2.flip(image, 1, dst=None)
# When the channels of image is 1
if len(image.shape) == 2:
image = np.expand_dims(image, axis=-1)
image = np.concatenate([image, image, image], axis=-1)
box[:, [0, 2]] = box[:, [0, 2]] / ih
box[:, [1, 3]] = box[:, [1, 3]] / iw
if flip:
box[:, [1, 3]] = 1 - box[:, [3, 1]]
box, label, num_match = ssd_bboxes_encode(box)
return image, box, label, num_match
return _data_aug(image, box, is_training, image_size=config.img_shape)
def create_voc_label(is_training):
"""Get image path and annotation from VOC."""
voc_root = config.voc_root
cls_map = {name: i for i, name in enumerate(config.classes)}
sub_dir = 'train' if is_training else 'eval'
voc_dir = os.path.join(voc_root, sub_dir)
if not os.path.isdir(voc_dir):
raise ValueError(f'Cannot find {sub_dir} dataset path.')
image_dir = anno_dir = voc_dir
if os.path.isdir(os.path.join(voc_dir, 'Images')):
image_dir = os.path.join(voc_dir, 'Images')
if os.path.isdir(os.path.join(voc_dir, 'Annotations')):
anno_dir = os.path.join(voc_dir, 'Annotations')
if not is_training:
json_file = os.path.join(config.voc_root, config.voc_json)
file_dir = os.path.split(json_file)[0]
if not os.path.isdir(file_dir):
os.makedirs(file_dir)
json_dict = {"images": [], "type": "instances", "annotations": [],
"categories": []}
bnd_id = 1
image_files_dict = {}
image_anno_dict = {}
images = []
id_iter = 0
for anno_file in os.listdir(anno_dir):
print(anno_file)
if not anno_file.endswith('xml'):
continue
tree = et.parse(os.path.join(anno_dir, anno_file))
root_node = tree.getroot()
file_name = root_node.find('filename').text
img_id = get_imageId_from_fileName(file_name, id_iter)
id_iter += 1
image_path = os.path.join(image_dir, file_name)
print(image_path)
if not os.path.isfile(image_path):
print(f'Cannot find image {file_name} according to annotations.')
continue
labels = []
for obj in root_node.iter('object'):
cls_name = obj.find('name').text
if cls_name not in cls_map:
print(f'Label "{cls_name}" not in "{config.classes}"')
continue
bnd_box = obj.find('bndbox')
x_min = int(float(bnd_box.find('xmin').text)) - 1
y_min = int(float(bnd_box.find('ymin').text)) - 1
x_max = int(float(bnd_box.find('xmax').text)) - 1
y_max = int(float(bnd_box.find('ymax').text)) - 1
labels.append([y_min, x_min, y_max, x_max, cls_map[cls_name]])
if not is_training:
o_width = abs(x_max - x_min)
o_height = abs(y_max - y_min)
ann = {'area': o_width * o_height, 'iscrowd': 0, 'image_id': \
img_id, 'bbox': [x_min, y_min, o_width, o_height], \
'category_id': cls_map[cls_name], 'id': bnd_id, \
'ignore': 0, \
'segmentation': []}
json_dict['annotations'].append(ann)
bnd_id = bnd_id + 1
if labels:
images.append(img_id)
image_files_dict[img_id] = image_path
image_anno_dict[img_id] = np.array(labels)
if not is_training:
size = root_node.find("size")
width = int(size.find('width').text)
height = int(size.find('height').text)
image = {'file_name': file_name, 'height': height, 'width': width,
'id': img_id}
json_dict['images'].append(image)
if not is_training:
for cls_name, cid in cls_map.items():
cat = {'supercategory': 'none', 'id': cid, 'name': cls_name}
json_dict['categories'].append(cat)
json_fp = open(json_file, 'w')
json_str = json.dumps(json_dict)
json_fp.write(json_str)
json_fp.close()
return images, image_files_dict, image_anno_dict
def create_coco_label(is_training):
"""Get image path and annotation from COCO."""
from pycocotools.coco import COCO
coco_root = config.coco_root
data_type = config.val_data_type
if is_training:
data_type = config.train_data_type
# Classes need to train or test.
train_cls = config.classes
train_cls_dict = {}
for i, cls in enumerate(train_cls):
train_cls_dict[cls] = i
anno_json = os.path.join(coco_root, config.instances_set.format(data_type))
coco = COCO(anno_json)
classs_dict = {}
cat_ids = coco.loadCats(coco.getCatIds())
for cat in cat_ids:
classs_dict[cat["id"]] = cat["name"]
image_ids = coco.getImgIds()
images = []
image_path_dict = {}
image_anno_dict = {}
for img_id in image_ids:
image_info = coco.loadImgs(img_id)
file_name = image_info[0]["file_name"]
anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=None)
anno = coco.loadAnns(anno_ids)
image_path = os.path.join(coco_root, data_type, file_name)
annos = []
iscrowd = False
for label in anno:
bbox = label["bbox"]
class_name = classs_dict[label["category_id"]]
iscrowd = iscrowd or label["iscrowd"]
if class_name in train_cls:
x_min, x_max = bbox[0], bbox[0] + bbox[2]
y_min, y_max = bbox[1], bbox[1] + bbox[3]
annos.append(list(map(round, [y_min, x_min, y_max, x_max])) + [train_cls_dict[class_name]])
if not is_training and iscrowd:
continue
if len(annos) >= 1:
images.append(img_id)
image_path_dict[img_id] = image_path
image_anno_dict[img_id] = np.array(annos)
return images, image_path_dict, image_anno_dict
def anno_parser(annos_str):
"""Parse annotation from string to list."""
annos = []
for anno_str in annos_str:
anno = list(map(int, anno_str.strip().split(',')))
annos.append(anno)
return annos
def filter_valid_data(image_dir, anno_path):
"""Filter valid image file, which both in image_dir and anno_path."""
images = []
image_path_dict = {}
image_anno_dict = {}
if not os.path.isdir(image_dir):
raise RuntimeError("Path given is not valid.")
if not os.path.isfile(anno_path):
raise RuntimeError("Annotation file is not valid.")
with open(anno_path, "rb") as f:
lines = f.readlines()
for img_id, line in enumerate(lines):
line_str = line.decode("utf-8").strip()
line_split = str(line_str).split(' ')
file_name = line_split[0]
image_path = os.path.join(image_dir, file_name)
if os.path.isfile(image_path):
images.append(img_id)
image_path_dict[img_id] = image_path
image_anno_dict[img_id] = anno_parser(line_split[1:])
return images, image_path_dict, image_anno_dict
def voc_data_to_mindrecord(mindrecord_dir, is_training, prefix="ssd.mindrecord", file_num=8):
"""Create MindRecord file by image_dir and anno_path."""
mindrecord_path = os.path.join(mindrecord_dir, prefix)
writer = FileWriter(mindrecord_path, file_num)
images, image_path_dict, image_anno_dict = create_voc_label(is_training)
ssd_json = {
"img_id": {"type": "int32", "shape": [1]},
"image": {"type": "bytes"},
"annotation": {"type": "int32", "shape": [-1, 5]},
}
writer.add_schema(ssd_json, "ssd_json")
for img_id in images:
image_path = image_path_dict[img_id]
with open(image_path, 'rb') as f:
img = f.read()
annos = np.array(image_anno_dict[img_id], dtype=np.int32)
img_id = np.array([img_id], dtype=np.int32)
row = {"img_id": img_id, "image": img, "annotation": annos}
writer.write_raw_data([row])
writer.commit()
def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="ssd.mindrecord", file_num=8):
"""Create MindRecord file."""
mindrecord_dir = config.mindrecord_dir
mindrecord_path = os.path.join(mindrecord_dir, prefix)
writer = FileWriter(mindrecord_path, file_num)
if dataset == "coco":
images, image_path_dict, image_anno_dict = create_coco_label(is_training)
else:
images, image_path_dict, image_anno_dict = filter_valid_data(config.image_dir, config.anno_path)
ssd_json = {
"img_id": {"type": "int32", "shape": [1]},
"image": {"type": "bytes"},
"annotation": {"type": "int32", "shape": [-1, 5]},
}
writer.add_schema(ssd_json, "ssd_json")
for img_id in images:
image_path = image_path_dict[img_id]
with open(image_path, 'rb') as f:
img = f.read()
annos = np.array(image_anno_dict[img_id], dtype=np.int32)
img_id = np.array([img_id], dtype=np.int32)
row = {"img_id": img_id, "image": img, "annotation": annos}
writer.write_raw_data([row])
writer.commit()
def create_ssd_dataset(mindrecord_file, batch_size=32, repeat_num=10, device_num=1, rank=0,
is_training=True, num_parallel_workers=64, use_multiprocessing=True):
"""Create SSD dataset with MindDataset."""
ds = de.MindDataset(mindrecord_file, columns_list=["img_id", "image", "annotation"], num_shards=device_num,
shard_id=rank, num_parallel_workers=num_parallel_workers, shuffle=is_training)
decode = C.Decode()
ds = ds.map(operations=decode, input_columns=["image"])
change_swap_op = C.HWC2CHW()
normalize_op = C.Normalize(mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
color_adjust_op = C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
compose_map_func = (lambda img_id, image, annotation: preprocess_fn(img_id, image, annotation, is_training))
if is_training:
output_columns = ["image", "box", "label", "num_match"]
trans = [color_adjust_op, normalize_op, change_swap_op]
else:
output_columns = ["img_id", "image", "image_shape"]
trans = [normalize_op, change_swap_op]
ds = ds.map(operations=compose_map_func, input_columns=["img_id", "image", "annotation"],
output_columns=output_columns, column_order=output_columns,
python_multiprocessing=use_multiprocessing,
num_parallel_workers=num_parallel_workers)
ds = ds.map(operations=trans, input_columns=["image"], python_multiprocessing=use_multiprocessing,
num_parallel_workers=num_parallel_workers)
ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(repeat_num)
return ds
def create_mindrecord(dataset="coco", prefix="ssd.mindrecord", is_training=True):
"""create mindrecord file"""
print("Start create dataset!")
# It will generate mindrecord file in config.mindrecord_dir,
# and the file name is ssd.mindrecord0, 1, ... file_num.
mindrecord_dir = config.mindrecord_dir
mindrecord_file = os.path.join(mindrecord_dir, prefix + "0")
if not os.path.exists(mindrecord_file):
if not os.path.isdir(mindrecord_dir):
os.makedirs(mindrecord_dir)
if dataset == "coco":
if os.path.isdir(config.coco_root):
print("Create Mindrecord.")
data_to_mindrecord_byte_image("coco", is_training, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("coco_root not exits.")
elif dataset == "voc":
if os.path.isdir(config.voc_root):
print("Create Mindrecord.")
voc_data_to_mindrecord(mindrecord_dir, is_training, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("voc_root not exits.")
else:
if os.path.isdir(config.image_dir) and os.path.exists(config.anno_path):
print("Create Mindrecord.")
data_to_mindrecord_byte_image("other", is_training, prefix)
print("Create Mindrecord Done, at {}".format(mindrecord_dir))
else:
print("image_dir or anno_path not exits.")
return mindrecord_file

View File

@ -0,0 +1,119 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Coco metrics utils"""
import json
import numpy as np
from .config import config
def apply_nms(all_boxes, all_scores, thres, max_boxes):
"""Apply NMS to bboxes."""
y1 = all_boxes[:, 0]
x1 = all_boxes[:, 1]
y2 = all_boxes[:, 2]
x2 = all_boxes[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = all_scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
if len(keep) >= max_boxes:
break
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thres)[0]
order = order[inds + 1]
return keep
def metrics(pred_data, anno_json):
"""Calculate mAP of predicted bboxes."""
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
num_classes = config.num_classes
#Classes need to train or test.
val_cls = config.classes
val_cls_dict = {}
for i, cls in enumerate(val_cls):
val_cls_dict[i] = cls
coco_gt = COCO(anno_json)
classs_dict = {}
cat_ids = coco_gt.loadCats(coco_gt.getCatIds())
for cat in cat_ids:
classs_dict[cat["name"]] = cat["id"]
predictions = []
img_ids = []
for sample in pred_data:
pred_boxes = sample['boxes']
box_scores = sample['box_scores']
img_id = sample['img_id']
h, w = sample['image_shape']
final_boxes = []
final_label = []
final_score = []
img_ids.append(img_id)
for c in range(1, num_classes):
class_box_scores = box_scores[:, c]
score_mask = class_box_scores > config.min_score
class_box_scores = class_box_scores[score_mask]
class_boxes = pred_boxes[score_mask] * [h, w, h, w]
if score_mask.any():
nms_index = apply_nms(class_boxes, class_box_scores, config.nms_threshold, config.max_boxes)
class_boxes = class_boxes[nms_index]
class_box_scores = class_box_scores[nms_index]
final_boxes += class_boxes.tolist()
final_score += class_box_scores.tolist()
final_label += [classs_dict[val_cls_dict[c]]] * len(class_box_scores)
for loc, label, score in zip(final_boxes, final_label, final_score):
res = {}
res['image_id'] = img_id
res['bbox'] = [loc[1], loc[0], loc[3] - loc[1], loc[2] - loc[0]]
res['score'] = score
res['category_id'] = label
predictions.append(res)
with open('predictions.json', 'w') as f:
json.dump(predictions, f)
coco_dt = coco_gt.loadRes('predictions.json')
E = COCOeval(coco_gt, coco_dt, iouType='bbox')
E.params.imgIds = img_ids
E.evaluate()
E.accumulate()
E.summarize()
return E.stats[0]

View File

@ -0,0 +1,46 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Parameters utils"""
from mindspore.common.initializer import initializer, TruncatedNormal
def init_net_param(network, initialize_mode='TruncatedNormal'):
"""Init the parameters in net."""
params = network.trainable_params()
for p in params:
if 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
if initialize_mode == 'TruncatedNormal':
p.set_data(initializer(TruncatedNormal(0.02), p.data.shape, p.data.dtype))
else:
p.set_data(initialize_mode, p.data.shape, p.data.dtype)
def load_backbone_params(network, param_dict):
"""Init the parameters from pre-train model, default is mobilenetv2."""
for _, param in network.parameters_and_names():
param_name = param.name.replace('network.backbone.', '')
name_split = param_name.split('.')
if 'features_1' in param_name:
param_name = param_name.replace('features_1', 'features')
if 'features_2' in param_name:
param_name = '.'.join(['features', str(int(name_split[1]) + 14)] + name_split[2:])
if param_name in param_dict:
param.set_data(param_dict[param_name].data)
def filter_checkpoint_parameter(param_dict):
"""remove useless parameters"""
for key in list(param_dict.keys()):
if 'multi_loc_layers' in key or 'multi_cls_layers' in key:
del param_dict[key]

View File

@ -0,0 +1,56 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Learning rate schedule"""
import math
import numpy as np
def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch):
"""
generate learning rate array
Args:
global_step(int): total steps of the training
lr_init(float): init learning rate
lr_end(float): end learning rate
lr_max(float): max learning rate
warmup_epochs(float): number of warmup epochs
total_epochs(int): total epoch of training
steps_per_epoch(int): steps of one epoch
Returns:
np.array, learning rate array
"""
lr_each_step = []
total_steps = steps_per_epoch * total_epochs
warmup_steps = steps_per_epoch * warmup_epochs
for i in range(total_steps):
if i < warmup_steps:
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
else:
lr = lr_end + \
(lr_max - lr_end) * \
(1. + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps))) / 2.
if lr < 0.0:
lr = 0.0
lr_each_step.append(lr)
current_step = global_step
lr_each_step = np.array(lr_each_step).astype(np.float32)
learning_rate = lr_each_step[current_step:]
return learning_rate

View File

@ -0,0 +1,499 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""SSD net based MobilenetV2."""
import mindspore.common.dtype as mstype
import mindspore as ms
import mindspore.nn as nn
from mindspore import context, Tensor
from mindspore.context import ParallelMode
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.communication.management import get_group_size
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.ops import composite as C
def _make_divisible(v, divisor, min_value=None):
"""nsures that all layers have a channel number that is divisible by 8."""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def _conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod='same'):
return nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=stride,
padding=0, pad_mode=pad_mod, has_bias=True)
def _bn(channel):
return nn.BatchNorm2d(channel, eps=1e-3, momentum=0.97,
gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
def _last_conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod='same', pad=0):
in_channels = in_channel
out_channels = in_channel
conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='same',
padding=pad)
conv2 = _conv2d(in_channel, out_channel, kernel_size=1)
return nn.SequentialCell([conv1, _bn(in_channel), nn.ReLU6(), conv2])
class ConvBNReLU(nn.Cell):
"""
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
Args:
in_planes (int): Input channel.
out_planes (int): Output channel.
kernel_size (int): Input kernel size.
stride (int): Stride size for the first convolutional layer. Default: 1.
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
shared_conv(Cell): Use the weight shared conv, default: None.
Returns:
Tensor, output tensor.
Examples:
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
"""
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1, shared_conv=None):
super(ConvBNReLU, self).__init__()
padding = 0
in_channels = in_planes
out_channels = out_planes
if shared_conv is None:
if groups == 1:
conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='same', padding=padding)
else:
out_channels = in_planes
conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, pad_mode='same',
padding=padding, group=in_channels)
layers = [conv, _bn(out_planes), nn.ReLU6()]
else:
layers = [shared_conv, _bn(out_planes), nn.ReLU6()]
self.features = nn.SequentialCell(layers)
def construct(self, x):
output = self.features(x)
return output
class InvertedResidual(nn.Cell):
"""
Residual block definition.
Args:
inp (int): Input channel.
oup (int): Output channel.
stride (int): Stride size for the first convolutional layer. Default: 1.
expand_ratio (int): expand ration of input channel
Returns:
Tensor, output tensor.
Examples:
>>> ResidualBlock(3, 256, 1, 1)
"""
def __init__(self, inp, oup, stride, expand_ratio, last_relu=False):
super(InvertedResidual, self).__init__()
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False),
_bn(oup),
])
self.conv = nn.SequentialCell(layers)
self.cast = P.Cast()
self.last_relu = last_relu
self.relu = nn.ReLU6()
def construct(self, x):
identity = x
x = self.conv(x)
if self.use_res_connect:
x = identity + x
if self.last_relu:
x = self.relu(x)
return x
class FlattenConcat(nn.Cell):
"""
Concatenate predictions into a single tensor.
Args:
config (dict): The default config of SSD.
Returns:
Tensor, flatten predictions.
"""
def __init__(self, config):
super(FlattenConcat, self).__init__()
self.num_ssd_boxes = config.num_ssd_boxes
self.concat = P.Concat(axis=1)
self.transpose = P.Transpose()
def construct(self, inputs):
output = ()
batch_size = F.shape(inputs[0])[0]
for x in inputs:
x = self.transpose(x, (0, 2, 3, 1))
output += (F.reshape(x, (batch_size, -1)),)
res = self.concat(output)
return F.reshape(res, (batch_size, self.num_ssd_boxes, -1))
class MultiBox(nn.Cell):
"""
Multibox conv layers. Each multibox layer contains class conf scores and localization predictions.
Args:
config (dict): The default config of SSD.
Returns:
Tensor, localization predictions.
Tensor, class conf scores.
"""
def __init__(self, config):
super(MultiBox, self).__init__()
num_classes = config.num_classes
out_channels = config.extras_out_channels
num_default = config.num_default
loc_layers = []
cls_layers = []
for k, out_channel in enumerate(out_channels):
loc_layers += [_last_conv2d(out_channel, 4 * num_default[k],
kernel_size=3, stride=1, pad_mod='same', pad=0)]
cls_layers += [_last_conv2d(out_channel, num_classes * num_default[k],
kernel_size=3, stride=1, pad_mod='same', pad=0)]
self.multi_loc_layers = nn.layer.CellList(loc_layers)
self.multi_cls_layers = nn.layer.CellList(cls_layers)
self.flatten_concat = FlattenConcat(config)
def construct(self, inputs):
loc_outputs = ()
cls_outputs = ()
for i in range(len(self.multi_loc_layers)):
loc_outputs += (self.multi_loc_layers[i](inputs[i]),)
cls_outputs += (self.multi_cls_layers[i](inputs[i]),)
return self.flatten_concat(loc_outputs), self.flatten_concat(cls_outputs)
class SSD320(nn.Cell):
"""
SSD320 Network. Default backbone is resnet34.
Args:
backbone (Cell): Backbone Network.
config (dict): The default config of SSD.
Returns:
Tensor, localization predictions.
Tensor, class conf scores.
Examples:backbone
SSD320(backbone=resnet34(num_classes=None),
config=config).
"""
def __init__(self, backbone, config, is_training=True):
super(SSD320, self).__init__()
self.backbone = backbone
in_channels = config.extras_in_channels
out_channels = config.extras_out_channels
ratios = config.extras_ratio
strides = config.extras_strides
residual_list = []
for i in range(2, len(in_channels)):
residual = InvertedResidual(in_channels[i], out_channels[i], stride=strides[i],
expand_ratio=ratios[i], last_relu=True)
residual_list.append(residual)
self.multi_residual = nn.layer.CellList(residual_list)
self.multi_box = MultiBox(config)
self.is_training = is_training
if not is_training:
self.activation = P.Sigmoid()
def construct(self, x):
"""return pred_loc and pred_label"""
layer_out_13, output = self.backbone(x)
multi_feature = (layer_out_13, output)
feature = output
for residual in self.multi_residual:
feature = residual(feature)
multi_feature += (feature,)
pred_loc, pred_label = self.multi_box(multi_feature)
if not self.is_training:
pred_label = self.activation(pred_label)
pred_loc = F.cast(pred_loc, mstype.float32)
pred_label = F.cast(pred_label, mstype.float32)
return pred_loc, pred_label
class SigmoidFocalClassificationLoss(nn.Cell):
""""
Sigmoid focal-loss for classification.
Args:
gamma (float): Hyper-parameter to balance the easy and hard examples. Default: 2.0
alpha (float): Hyper-parameter to balance the positive and negative example. Default: 0.25
Returns:
Tensor, the focal loss.
"""
def __init__(self, gamma=2.0, alpha=0.25):
super(SigmoidFocalClassificationLoss, self).__init__()
self.sigmiod_cross_entropy = P.SigmoidCrossEntropyWithLogits()
self.sigmoid = P.Sigmoid()
self.pow = P.Pow()
self.onehot = P.OneHot()
self.on_value = Tensor(1.0, mstype.float32)
self.off_value = Tensor(0.0, mstype.float32)
self.gamma = gamma
self.alpha = alpha
def construct(self, logits, label):
label = self.onehot(label, F.shape(logits)[-1], self.on_value, self.off_value)
sigmiod_cross_entropy = self.sigmiod_cross_entropy(logits, label)
sigmoid = self.sigmoid(logits)
label = F.cast(label, mstype.float32)
p_t = label * sigmoid + (1 - label) * (1 - sigmoid)
modulating_factor = self.pow(1 - p_t, self.gamma)
alpha_weight_factor = label * self.alpha + (1 - label) * (1 - self.alpha)
focal_loss = modulating_factor * alpha_weight_factor * sigmiod_cross_entropy
return focal_loss
class SSDWithLossCell(nn.Cell):
""""
Provide SSD training loss through network.
Args:
network (Cell): The training network.
config (dict): SSD config.
Returns:
Tensor, the loss of the network.
"""
def __init__(self, network, config):
super(SSDWithLossCell, self).__init__()
self.network = network
self.less = P.Less()
self.tile = P.Tile()
self.reduce_sum = P.ReduceSum()
self.reduce_mean = P.ReduceMean()
self.expand_dims = P.ExpandDims()
self.class_loss = SigmoidFocalClassificationLoss(config.gamma, config.alpha)
self.loc_loss = nn.SmoothL1Loss()
def construct(self, x, gt_loc, gt_label, num_matched_boxes):
"""get loss"""
pred_loc, pred_label = self.network(x)
mask = F.cast(self.less(0, gt_label), mstype.float32)
num_matched_boxes = self.reduce_sum(F.cast(num_matched_boxes, mstype.float32))
# Localization Loss
mask_loc = self.tile(self.expand_dims(mask, -1), (1, 1, 4))
smooth_l1 = self.loc_loss(pred_loc, gt_loc) * mask_loc
loss_loc = self.reduce_sum(self.reduce_mean(smooth_l1, -1), -1)
# Classification Loss
loss_cls = self.class_loss(pred_label, gt_label)
loss_cls = self.reduce_sum(loss_cls, (1, 2))
return self.reduce_sum((loss_cls + loss_loc) / num_matched_boxes)
grad_scale = C.MultitypeFuncGraph("grad_scale")
@grad_scale.register("Tensor", "Tensor")
def tensor_grad_scale(scale, grad):
return grad * P.Reciprocal()(scale)
class TrainingWrapper(nn.Cell):
"""
Encapsulation class of SSD network training.
Append an optimizer to the training network after that the construct
function can be called to create the backward graph.
Args:
network (Cell): The training network. Note that loss function should have been added.
optimizer (Optimizer): Optimizer for updating the weights.
sens (Number): The adjust parameter. Default: 1.0.
use_global_nrom(bool): Whether apply global norm before optimizer. Default: False
"""
def __init__(self, network, optimizer, sens=1.0, use_global_norm=False):
super(TrainingWrapper, self).__init__(auto_prefix=False)
self.network = network
self.network.set_grad()
self.weights = ms.ParameterTuple(network.trainable_params())
self.optimizer = optimizer
self.grad = C.GradOperation(get_by_list=True, sens_param=True)
self.sens = sens
self.reducer_flag = False
self.grad_reducer = None
self.use_global_norm = use_global_norm
self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]:
self.reducer_flag = True
if self.reducer_flag:
mean = context.get_auto_parallel_context("gradients_mean")
if auto_parallel_context().get_device_num_is_set():
degree = context.get_auto_parallel_context("device_num")
else:
degree = get_group_size()
self.grad_reducer = nn.DistributedGradReducer(optimizer.parameters, mean, degree)
self.hyper_map = C.HyperMap()
def construct(self, *args):
"""opt"""
weights = self.weights
loss = self.network(*args)
sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
grads = self.grad(self.network, weights)(*args, sens)
if self.reducer_flag:
# apply grad reducer on grads
grads = self.grad_reducer(grads)
if self.use_global_norm:
grads = self.hyper_map(F.partial(grad_scale, F.scalar_to_array(self.sens)), grads)
grads = C.clip_by_global_norm(grads)
return F.depend(loss, self.optimizer(grads))
class SSDWithMobileNetV2(nn.Cell):
"""
MobileNetV2 architecture for SSD backbone.
Args:
width_mult (int): Channels multiplier for round to 8/16 and others. Default is 1.
inverted_residual_setting (list): Inverted residual settings. Default is None
round_nearest (list): Channel round to. Default is 8
Returns:
Tensor, the 13th feature after ConvBNReLU in MobileNetV2.
Tensor, the last feature in MobileNetV2.
Examples:
>>> SSDWithMobileNetV2()
"""
def __init__(self, width_mult=1.0, inverted_residual_setting=None, round_nearest=8):
super(SSDWithMobileNetV2, self).__init__()
block = InvertedResidual
input_channel = 32
last_channel = 1280
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
if len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
#building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(3, input_channel, stride=2)]
# building inverted residual blocks
layer_index = 0
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
if layer_index == 13:
hidden_dim = int(round(input_channel * t))
self.expand_layer_conv_13 = ConvBNReLU(input_channel, hidden_dim, kernel_size=1)
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
layer_index += 1
# building last several layers
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1))
self.features_1 = nn.SequentialCell(features[:14])
self.features_2 = nn.SequentialCell(features[14:])
def construct(self, x):
out = self.features_1(x)
expand_layer_conv_13 = self.expand_layer_conv_13(out)
out = self.features_2(out)
return expand_layer_conv_13, out
def get_out_channels(self):
return self.last_channel
class SsdInferWithDecoder(nn.Cell):
"""
SSD Infer wrapper to decode the bbox locations.
Args:
network (Cell): the origin ssd infer network without bbox decoder.
default_boxes (Tensor): the default_boxes from anchor generator
config (dict): ssd config
Returns:
Tensor, the locations for bbox after decoder representing (y0,x0,y1,x1)
Tensor, the prediction labels.
"""
def __init__(self, network, default_boxes, config):
super(SsdInferWithDecoder, self).__init__()
self.network = network
self.default_boxes = default_boxes
self.prior_scaling_xy = config.prior_scaling[0]
self.prior_scaling_wh = config.prior_scaling[1]
def construct(self, x):
"""get pred_xy and pred_label"""
pred_loc, pred_label = self.network(x)
default_bbox_xy = self.default_boxes[..., :2]
default_bbox_wh = self.default_boxes[..., 2:]
pred_xy = pred_loc[..., :2] * self.prior_scaling_xy * default_bbox_wh + default_bbox_xy
pred_wh = P.Exp()(pred_loc[..., 2:] * self.prior_scaling_wh) * default_bbox_wh
pred_xy_0 = pred_xy - pred_wh / 2.0
pred_xy_1 = pred_xy + pred_wh / 2.0
pred_xy = P.Concat(-1)((pred_xy_0, pred_xy_1))
pred_xy = P.Maximum()(pred_xy, 0)
pred_xy = P.Minimum()(pred_xy, 1)
return pred_xy, pred_label
def ssd_mobilenet_v2(**kwargs):
return SSDWithMobileNetV2(**kwargs)

View File

@ -0,0 +1,169 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# less required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Train SSD and get checkpoint files."""
import os
import argparse
import ast
import mindspore.common.dtype as mstype
import mindspore.nn as nn
from mindspore import context, Tensor
from mindspore.communication.management import init, get_rank
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
from mindspore.train import Model
from mindspore.context import ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
from src.ssd import SSD320, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2
from src.config import config
from src.dataset import create_ssd_dataset, create_mindrecord
from src.lr_schedule import get_lr
from src.init_params import init_net_param, filter_checkpoint_parameter
set_seed(1)
def get_args():
"""get arguments"""
parser = argparse.ArgumentParser(description="SSD training")
parser.add_argument("--run_platform", type=str, default="Ascend", choices=("Ascend"),
help="run platform.")
parser.add_argument("--only_create_dataset", type=ast.literal_eval, default=False,
help="If set it true, only create Mindrecord, default is False.")
parser.add_argument("--distribute", type=ast.literal_eval, default=False,
help="Run distribute, default is False.")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
parser.add_argument("--lr", type=float, default=0.05, help="Learning rate, default is 0.05.")
parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, default is coco.")
parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
parser.add_argument('--train_url', type=str, default=None, help='Train output path')
parser.add_argument('--modelarts_mode', type=ast.literal_eval, default=False,
help='train on modelarts or not, default is False')
parser.add_argument('--mindrecord_mode', type=str, default="mindrecord", choices=("coco", "mindrecord"),
help='type of data, default is mindrecord')
parser.add_argument("--epoch_size", type=int, default=500, help="Epoch size, default is 500.")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
parser.add_argument("--save_checkpoint_epochs", type=int, default=10, help="Save checkpoint epochs, default is 10.")
parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
parser.add_argument("--filter_weight", type=ast.literal_eval, default=False,
help="Filter head weight parameters, default is False.")
parser.add_argument('--freeze_layer', type=str, default="none", choices=["none", "backbone"],
help="freeze the weights of network, support freeze the backbone's weights, "
"default is not freezing.")
args_opt = parser.parse_args()
return args_opt
def main():
args_opt = get_args()
if args_opt.modelarts_mode:
import moxing as mox
device_id = int(os.getenv('DEVICE_ID'))
device_num = int(os.getenv('RANK_SIZE'))
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform, device_id=device_id)
config.coco_root = os.path.join(config.coco_root, str(device_id))
config.mindrecord_dir = os.path.join(config.mindrecord_dir, str(device_id))
if args_opt.distribute:
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
device_num=device_num)
init()
context.set_auto_parallel_context(all_reduce_fusion_config=[29, 58, 89])
rank = get_rank()
else:
rank = 0
if args_opt.mindrecord_mode == "mindrecord":
mox.file.copy_parallel(args_opt.data_url, config.mindrecord_dir)
else:
mox.file.copy_parallel(args_opt.data_url, config.coco_root)
else:
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.run_platform)
if args_opt.distribute:
if os.getenv("DEVICE_ID", "not_set").isdigit():
context.set_context(device_id=int(os.getenv("DEVICE_ID")))
device_num = args_opt.device_num
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
device_num=device_num)
init()
context.set_auto_parallel_context(all_reduce_fusion_config=[29, 58, 89])
rank = get_rank()
else:
rank = 0
device_num = 1
context.set_context(device_id=args_opt.device_id)
mindrecord_file = create_mindrecord(args_opt.dataset, "ssd.mindrecord", True)
if args_opt.only_create_dataset:
if args_opt.modelarts_mode:
mox.file.copy_parallel(config.mindrecord_dir, args_opt.train_url)
return
loss_scale = float(args_opt.loss_scale)
# When create MindDataset, using the fitst mindrecord file, such as ssd.mindrecord0.
dataset = create_ssd_dataset(mindrecord_file, repeat_num=1, batch_size=args_opt.batch_size,
device_num=device_num, rank=rank)
dataset_size = dataset.get_dataset_size()
print("Create dataset done!")
backbone = ssd_mobilenet_v2()
ssd = SSD320(backbone=backbone, config=config)
net = SSDWithLossCell(ssd, config)
net.to_float(mstype.float16)
init_net_param(net)
# checkpoint
ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs)
save_ckpt_path = './ckpt_' + str(rank) + '/'
ckpoint_cb = ModelCheckpoint(prefix="ssd", directory=save_ckpt_path, config=ckpt_config)
if args_opt.pre_trained:
param_dict = load_checkpoint(args_opt.pre_trained)
if args_opt.filter_weight:
filter_checkpoint_parameter(param_dict)
load_param_into_net(net, param_dict)
if args_opt.freeze_layer == "backbone":
for param in backbone.feature_1.trainable_params():
param.requires_grad = False
lr = Tensor(get_lr(global_step=args_opt.pre_trained_epoch_size * dataset_size,
lr_init=config.lr_init, lr_end=config.lr_end_rate * args_opt.lr, lr_max=args_opt.lr,
warmup_epochs=config.warmup_epochs,
total_epochs=args_opt.epoch_size,
steps_per_epoch=dataset_size))
opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
config.momentum, config.weight_decay, loss_scale)
net = TrainingWrapper(net, opt, loss_scale)
callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
model = Model(net)
dataset_sink_mode = False
if args_opt.mode == "sink":
print("In sink mode, one epoch return a loss.")
dataset_sink_mode = True
print("Start train SSD, the first epoch will be slower because of the graph compilation.")
model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode)
if args_opt.modelarts_mode:
mox.file.copy_parallel(save_ckpt_path, args_opt.train_url)
if __name__ == '__main__':
main()