Add GCN to model zoo

This commit is contained in:
chentingting 2020-06-11 16:43:29 +08:00
parent c3d78e2aa2
commit 2e3387f8f9
10 changed files with 700 additions and 0 deletions

113
model_zoo/gcn/README.md Normal file
View File

@ -0,0 +1,113 @@
# GCN Example
## Description
This is an example of training GCN with Cora and Citeseer dataset in MindSpore.
## Requirements
- Install [MindSpore](https://www.mindspore.cn/install/en).
- Download the dataset Cora or Citeseer provided by /kimiyoung/planetoid from github.
> Place the dataset to any path you want, the folder should include files as follows(we use Cora dataset as an example):
```
.
└─data
├─ind.cora.allx
├─ind.cora.ally
├─ind.cora.graph
├─ind.cora.test.index
├─ind.cora.tx
├─ind.cora.ty
├─ind.cora.x
└─ind.cora.y
```
> Generate dataset in mindrecord format for cora or citeseer.
>> Usage
```buildoutcfg
cd ./scripts
# SRC_PATH is the dataset file path you downloaded, DATASET_NAME is cora or citeseer
sh run_process_data.sh [SRC_PATH] [DATASET_NAME]
```
>> Launch
```
#Generate dataset in mindrecord format for cora
sh run_process_data.sh cora
#Generate dataset in mindrecord format for citeseer
sh run_process_data.sh citeseer
```
## Structure
```shell
.
└─gcn
├─README.md
├─scripts
| ├─run_process_data.sh # Generate dataset in mindrecord format
| └─run_train.sh # Launch training
|
├─src
| ├─config.py # Parameter configuration
| ├─dataset.py # Data preprocessin
| ├─gcn.py # GCN backbone
| └─metrics.py # Loss and accuracy
|
└─train.py # Train net
```
## Parameter configuration
Parameters for training can be set in config.py.
```
"learning_rate": 0.01, # Learning rate
"epochs": 200, # Epoch sizes for training
"hidden1": 16, # Hidden size for the first graph convolution layer
"dropout": 0.5, # Dropout ratio for the first graph convolution layer
"weight_decay": 5e-4, # Weight decay for the parameter of the first graph convolution layer
"early_stopping": 10, # Tolerance for early stopping
```
## Running the example
### Train
#### Usage
```
# run train with cora or citeseer dataset, DATASET_NAME is cora or citeseer
sh run_train.sh [DATASET_NAME]
```
#### Launch
```bash
sh run_train.sh cora
```
#### Result
Training result will be stored in the scripts path, whose folder name begins with "train". You can find the result like the followings in log.
```
Epoch: 0001 train_loss= 1.95373 train_acc= 0.09286 val_loss= 1.95075 val_acc= 0.20200 time= 7.25737
Epoch: 0002 train_loss= 1.94812 train_acc= 0.32857 val_loss= 1.94717 val_acc= 0.34000 time= 0.00438
Epoch: 0003 train_loss= 1.94249 train_acc= 0.47857 val_loss= 1.94337 val_acc= 0.43000 time= 0.00428
Epoch: 0004 train_loss= 1.93550 train_acc= 0.55000 val_loss= 1.93957 val_acc= 0.46400 time= 0.00421
Epoch: 0005 train_loss= 1.92617 train_acc= 0.67143 val_loss= 1.93558 val_acc= 0.45400 time= 0.00430
...
Epoch: 0196 train_loss= 0.60326 train_acc= 0.97857 val_loss= 1.05155 val_acc= 0.78200 time= 0.00418
Epoch: 0197 train_loss= 0.60377 train_acc= 0.97143 val_loss= 1.04940 val_acc= 0.78000 time= 0.00418
Epoch: 0198 train_loss= 0.60680 train_acc= 0.95000 val_loss= 1.04847 val_acc= 0.78000 time= 0.00414
Epoch: 0199 train_loss= 0.61920 train_acc= 0.96429 val_loss= 1.04797 val_acc= 0.78400 time= 0.00413
Epoch: 0200 train_loss= 0.57948 train_acc= 0.96429 val_loss= 1.04753 val_acc= 0.78600 time= 0.00415
Optimization Finished!
Test set results: cost= 1.00983 accuracy= 0.81300 time= 0.39083
...
```

View File

@ -0,0 +1,54 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# != 2 ]
then
echo "Usage: sh run_train.sh [SRC_PATH] [DATASET_NAME]"
exit 1
fi
get_real_path(){
if [ "${1:0:1}" == "/" ]; then
echo "$1"
else
echo "$(realpath -m $PWD/$1)"
fi
}
SRC_PATH=$(get_real_path $1)
echo $SRC_PATH
DATASET_NAME=$2
echo $DATASET_NAME
if [ ! -d data_mr ]; then
mkdir data_mr
else
echo data_mr exist
fi
MINDRECORD_PATH=`pwd`/data_mr
rm -f $MINDRECORD_PATH/*
cd ../../../example/graph_to_mindrecord || exit
python writer.py --mindrecord_script $DATASET_NAME \
--mindrecord_file "$MINDRECORD_PATH/$DATASET_NAME" \
--mindrecord_partitions 1 \
--mindrecord_header_size_by_bit 18 \
--mindrecord_page_size_by_bit 20 \
--graph_api_args "$SRC_PATH"
cd - || exit

View File

@ -0,0 +1,55 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if [ $# != 1 ]
then
echo "Usage: sh run_train.sh [DATASET_NAME]"
exit 1
fi
DATASET_NAME=$1
echo $DATASET_NAME
ulimit -u unlimited
export DEVICE_NUM=1
export RANK_SIZE=$DEVICE_NUM
export DEVICE_ID=0
export RANK_ID=0
if [ -d "train" ];
then
rm -rf ./train
fi
mkdir ./train
cp ../*.py ./train
cp *.sh ./train
cp -r ../src ./train
cd ./train || exit
env > env.log
echo "start training for device $DEVICE_ID"
if [ $DATASET_NAME == cora ]
then
python train.py --data_dir=../data_mr/$DATASET_NAME --train_nodes_num=140 &> log &
fi
if [ $DATASET_NAME == citeseer ]
then
python train.py --data_dir=../data_mr/$DATASET_NAME --train_nodes_num=120 &> log &
fi
cd ..

View File

@ -0,0 +1,26 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in train.py
"""
class ConfigGCN():
learning_rate = 0.01
epochs = 200
hidden1 = 16
dropout = 0.5
weight_decay = 5e-4
early_stopping = 10

View File

@ -0,0 +1,65 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
create adjacency matrix, node features, labels, and mask for training.
"""
import numpy as np
import scipy.sparse as sp
import mindspore.dataset as ds
def normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
def get_adj_features_labels(data_dir):
"""Get adjacency matrix, node features and labels from dataset."""
g = ds.GraphData(data_dir)
nodes = g.get_all_nodes(0)
nodes_list = nodes.tolist()
row_tensor = g.get_node_feature(nodes_list, [1, 2])
features = row_tensor[0]
labels = row_tensor[1]
nodes_num = labels.shape[0]
class_num = labels.max() + 1
labels_onehot = np.eye(nodes_num, class_num)[labels].astype(np.float32)
neighbor = g.get_all_neighbors(nodes_list, 0)
node_map = {node_id: index for index, node_id in enumerate(nodes_list)}
adj = np.zeros([nodes_num, nodes_num], dtype=np.float32)
for index, value in np.ndenumerate(neighbor):
# The first column of neighbor is node_id, second column to last column are neighbors of the first column.
# So we only care index[1] > 1.
# If the node does not have that many neighbors, -1 is padded. So if value < 0, we will not deal with it.
if value >= 0 and index[1] > 0:
adj[node_map[neighbor[index[0], 0]], node_map[value]] = 1
adj = sp.coo_matrix(adj)
adj = adj + adj.T.multiply(adj.T > adj) + sp.eye(nodes_num)
nor_adj = normalize_adj(adj)
nor_adj = np.array(nor_adj.todense())
return nor_adj, features, labels_onehot
def get_mask(total, begin, end):
"""Generate mask."""
mask = np.zeros([total]).astype(np.float32)
mask[begin:end] = 1
return mask

220
model_zoo/gcn/src/gcn.py Normal file
View File

@ -0,0 +1,220 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""GCN."""
import numpy as np
from mindspore import nn
from mindspore.common.parameter import ParameterTuple
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.ops import operations as P
from mindspore import Tensor
from mindspore.nn.layer.activation import get_activation
from src.metrics import Loss, Accuracy
def glorot(shape):
init_range = np.sqrt(6.0/(shape[0]+shape[1]))
initial = np.random.uniform(-init_range, init_range, shape).astype(np.float32)
return Tensor(initial)
class GraphConvolution(nn.Cell):
"""
GCN graph convolution layer.
Args:
feature_in_dim (int): The input feature dimension.
feature_out_dim (int): The output feature dimension.
dropout_ratio (float): Dropout ratio for the dropout layer. Default: None.
activation (str): Activation function applied to the output of the layer, eg. 'relu'. Default: None.
Inputs:
- **adj** (Tensor) - Tensor of shape :math:`(N, N)`.
- **input_feature** (Tensor) - Tensor of shape :math:`(N, C)`.
Outputs:
Tensor, output tensor.
"""
def __init__(self,
feature_in_dim,
feature_out_dim,
dropout_ratio=None,
activation=None):
super(GraphConvolution, self).__init__()
self.in_dim = feature_in_dim
self.out_dim = feature_out_dim
self.weight_init = glorot([self.out_dim, self.in_dim])
self.fc = nn.Dense(self.in_dim,
self.out_dim,
weight_init=self.weight_init,
has_bias=False)
self.dropout_ratio = dropout_ratio
if self.dropout_ratio is not None:
self.dropout = nn.Dropout(keep_prob=1-self.dropout_ratio)
self.dropout_flag = self.dropout_ratio is not None
self.activation = get_activation(activation)
self.activation_flag = self.activation is not None
self.matmul = P.MatMul()
def construct(self, adj, input_feature):
dropout = input_feature
if self.dropout_flag:
dropout = self.dropout(dropout)
fc = self.fc(dropout)
output_feature = self.matmul(adj, fc)
if self.activation_flag:
output_feature = self.activation(output_feature)
return output_feature
class GCN(nn.Cell):
"""
GCN architecture.
Args:
config (ConfigGCN): Configuration for GCN.
adj (numpy.ndarray): Numbers of block in different layers.
feature (numpy.ndarray): Input channel in each layer.
output_dim (int): The number of output channels, equal to classes num.
"""
def __init__(self, config, adj, feature, output_dim):
super(GCN, self).__init__()
self.adj = Tensor(adj)
self.feature = Tensor(feature)
input_dim = feature.shape[1]
self.layer0 = GraphConvolution(input_dim, config.hidden1, activation="relu", dropout_ratio=config.dropout)
self.layer1 = GraphConvolution(config.hidden1, output_dim, dropout_ratio=None)
def construct(self):
output0 = self.layer0(self.adj, self.feature)
output1 = self.layer1(self.adj, output0)
return output1
class LossAccuracyWrapper(nn.Cell):
"""
Wraps the GCN model with loss and accuracy cell.
Args:
network (Cell): GCN network.
label (numpy.ndarray): Dataset labels.
mask (numpy.ndarray): Mask for training, evaluation or test.
weight_decay (float): Weight decay parameter for weight of the first convolution layer.
"""
def __init__(self, network, label, mask, weight_decay):
super(LossAccuracyWrapper, self).__init__()
self.network = network
self.loss = Loss(label, mask, weight_decay, network.trainable_params()[0])
self.accuracy = Accuracy(label, mask)
def construct(self):
preds = self.network()
loss = self.loss(preds)
accuracy = self.accuracy(preds)
return loss, accuracy
class LossWrapper(nn.Cell):
"""
Wraps the GCN model with loss.
Args:
network (Cell): GCN network.
label (numpy.ndarray): Dataset labels.
mask (numpy.ndarray): Mask for training.
weight_decay (float): Weight decay parameter for weight of the first convolution layer.
"""
def __init__(self, network, label, mask, weight_decay):
super(LossWrapper, self).__init__()
self.network = network
self.loss = Loss(label, mask, weight_decay, network.trainable_params()[0])
def construct(self):
preds = self.network()
loss = self.loss(preds)
return loss
class TrainOneStepCell(nn.Cell):
r"""
Network training package class.
Wraps the network with an optimizer. The resulting Cell be trained without inputs.
Backward graph will be created in the construct function to do parameter updating. Different
parallel modes are available to run the training.
Args:
network (Cell): The training network.
optimizer (Cell): Optimizer for updating the weights.
sens (Number): The scaling number to be filled as the input of backpropagation. Default value is 1.0.
Outputs:
Tensor, a scalar Tensor with shape :math:`()`.
Examples:
>>> net = Net()
>>> loss_fn = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> loss_net = nn.WithLossCell(net, loss_fn)
>>> train_net = nn.TrainOneStepCell(loss_net, optim)
"""
def __init__(self, network, optimizer, sens=1.0):
super(TrainOneStepCell, self).__init__(auto_prefix=False)
self.network = network
self.network.add_flags(defer_inline=True)
self.weights = ParameterTuple(network.trainable_params())
self.optimizer = optimizer
self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True)
self.sens = sens
def construct(self):
weights = self.weights
loss = self.network()
sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
grads = self.grad(self.network, weights)(sens)
return F.depend(loss, self.optimizer(grads))
class TrainNetWrapper(nn.Cell):
"""
Wraps the GCN model with optimizer.
Args:
network (Cell): GCN network.
label (numpy.ndarray): Dataset labels.
mask (numpy.ndarray): Mask for training, evaluation or test.
config (ConfigGCN): Configuration for GCN.
"""
def __init__(self, network, label, mask, config):
super(TrainNetWrapper, self).__init__(auto_prefix=True)
self.network = network
loss_net = LossWrapper(network, label, mask, config.weight_decay)
optimizer = nn.Adam(loss_net.trainable_params(),
learning_rate=config.learning_rate)
self.loss_train_net = TrainOneStepCell(loss_net, optimizer)
self.accuracy = Accuracy(label, mask)
def construct(self):
loss = self.loss_train_net()
accuracy = self.accuracy(self.network())
return loss, accuracy

View File

@ -0,0 +1,70 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Loss and accuracy."""
from mindspore import nn
from mindspore import Tensor
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
class Loss(nn.Cell):
"""Softmax cross-entropy loss with masking."""
def __init__(self, label, mask, weight_decay, param):
super(Loss, self).__init__()
self.label = Tensor(label)
self.mask = Tensor(mask)
self.loss = P.SoftmaxCrossEntropyWithLogits()
self.one = Tensor(1.0, mstype.float32)
self.zero = Tensor(0.0, mstype.float32)
self.mean = P.ReduceMean()
self.cast = P.Cast()
self.l2_loss = P.L2Loss()
self.reduce_sum = P.ReduceSum()
self.weight_decay = weight_decay
self.param = param
def construct(self, preds):
param = self.l2_loss(self.param)
loss = self.weight_decay * param
preds = self.cast(preds, mstype.float32)
loss = loss + self.loss(preds, self.label)[0]
mask = self.cast(self.mask, mstype.float32)
mask_reduce = self.mean(mask)
mask = mask / mask_reduce
loss = loss * mask
loss = self.mean(loss)
return loss
class Accuracy(nn.Cell):
"""Accuracy with masking."""
def __init__(self, label, mask):
super(Accuracy, self).__init__()
self.label = Tensor(label)
self.mask = Tensor(mask)
self.equal = P.Equal()
self.argmax = P.Argmax()
self.cast = P.Cast()
self.mean = P.ReduceMean()
def construct(self, preds):
preds = self.cast(preds, mstype.float32)
correct_prediction = self.equal(self.argmax(preds), self.argmax(self.label))
accuracy_all = self.cast(correct_prediction, mstype.float32)
mask = self.cast(self.mask, mstype.float32)
mask_reduce = self.mean(mask)
mask = mask / mask_reduce
accuracy_all *= mask
return self.mean(accuracy_all)

93
model_zoo/gcn/train.py Normal file
View File

@ -0,0 +1,93 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
GCN training script.
"""
import time
import argparse
import numpy as np
from mindspore import context
from src.gcn import GCN, LossAccuracyWrapper, TrainNetWrapper
from src.config import ConfigGCN
from src.dataset import get_adj_features_labels, get_mask
def train():
"""Train model."""
parser = argparse.ArgumentParser(description='GCN')
parser.add_argument('--data_dir', type=str, default='./data/cora/cora_mr', help='Dataset directory')
parser.add_argument('--seed', type=int, default=123, help='Random seed')
parser.add_argument('--train_nodes_num', type=int, default=140, help='Nodes numbers for training')
parser.add_argument('--eval_nodes_num', type=int, default=500, help='Nodes numbers for evaluation')
parser.add_argument('--test_nodes_num', type=int, default=1000, help='Nodes numbers for test')
args_opt = parser.parse_args()
np.random.seed(args_opt.seed)
context.set_context(mode=context.GRAPH_MODE,
device_target="Ascend", save_graphs=False)
config = ConfigGCN()
adj, feature, label = get_adj_features_labels(args_opt.data_dir)
nodes_num = label.shape[0]
train_mask = get_mask(nodes_num, 0, args_opt.train_nodes_num)
eval_mask = get_mask(nodes_num, args_opt.train_nodes_num, args_opt.train_nodes_num + args_opt.eval_nodes_num)
test_mask = get_mask(nodes_num, nodes_num - args_opt.test_nodes_num, nodes_num)
class_num = label.shape[1]
gcn_net = GCN(config, adj, feature, class_num)
gcn_net.add_flags_recursive(fp16=True)
eval_net = LossAccuracyWrapper(gcn_net, label, eval_mask, config.weight_decay)
test_net = LossAccuracyWrapper(gcn_net, label, test_mask, config.weight_decay)
train_net = TrainNetWrapper(gcn_net, label, train_mask, config)
loss_list = []
for epoch in range(config.epochs):
t = time.time()
train_net.set_train()
train_result = train_net()
train_loss = train_result[0].asnumpy()
train_accuracy = train_result[1].asnumpy()
eval_net.set_train(False)
eval_result = eval_net()
eval_loss = eval_result[0].asnumpy()
eval_accuracy = eval_result[1].asnumpy()
loss_list.append(eval_loss)
print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(train_loss),
"train_acc=", "{:.5f}".format(train_accuracy), "val_loss=", "{:.5f}".format(eval_loss),
"val_acc=", "{:.5f}".format(eval_accuracy), "time=", "{:.5f}".format(time.time() - t))
if epoch > config.early_stopping and loss_list[-1] > np.mean(loss_list[-(config.early_stopping+1):-1]):
print("Early stopping...")
break
t_test = time.time()
test_net.set_train(False)
test_result = test_net()
test_loss = test_result[0].asnumpy()
test_accuracy = test_result[1].asnumpy()
print("Test set results:", "loss=", "{:.5f}".format(test_loss),
"accuracy=", "{:.5f}".format(test_accuracy), "time=", "{:.5f}".format(time.time() - t_test))
if __name__ == '__main__':
train()

View File

@ -13,6 +13,7 @@
# limitations under the License.
# ============================================================================
class ConfigGCN():
learning_rate = 0.01
epochs = 200

View File

@ -58,10 +58,12 @@ def test_gcn():
for epoch in range(config.epochs):
t = time.time()
train_net.set_train()
train_result = train_net()
train_loss = train_result[0].asnumpy()
train_accuracy = train_result[1].asnumpy()
eval_net.set_train(False)
eval_result = eval_net()
eval_loss = eval_result[0].asnumpy()
eval_accuracy = eval_result[1].asnumpy()
@ -75,6 +77,7 @@ def test_gcn():
print("Early stopping...")
break
test_net.set_train(False)
test_result = test_net()
test_loss = test_result[0].asnumpy()
test_accuracy = test_result[1].asnumpy()