forked from mindspore-Ecosystem/mindspore
update annotation of WarmUpLR, FTRL, LARS, etc. operators.
This commit is contained in:
parent
fa3638ad6b
commit
2e078eefb4
|
@ -481,28 +481,32 @@ class OneHot(Cell):
|
|||
"""
|
||||
Returns a one-hot tensor.
|
||||
|
||||
The locations represented by indices in argument 'indices' take value on_value,
|
||||
The locations represented by indices in argument `indices` take value on_value,
|
||||
while all other locations take value off_value.
|
||||
|
||||
Note:
|
||||
If the input indices is rank :math:`N`, the output will have rank :math:`N+1`. The new
|
||||
axis is created at dimension `axis`.
|
||||
|
||||
If :math:`indices` is a scalar, the output shape will be a vector of length :math:`depth`.
|
||||
If `indices` is a scalar, the output shape will be a vector of length `depth`.
|
||||
|
||||
If :math:`indices` is a vector of length :math:`features`, the output shape will be:
|
||||
If `indices` is a vector of length `features`, the output shape will be:
|
||||
|
||||
:math:`features * depth if axis == -1`
|
||||
.. code-block::
|
||||
|
||||
:math:`depth * features if axis == 0`
|
||||
features * depth if axis == -1
|
||||
|
||||
If :math:`indices` is a matrix with shape :math:`[batch, features]`, the output shape will be:
|
||||
depth * features if axis == 0
|
||||
|
||||
:math:`batch * features * depth if axis == -1`
|
||||
If `indices` is a matrix with shape `[batch, features]`, the output shape will be:
|
||||
|
||||
:math:`batch * depth * features if axis == 1`
|
||||
.. code-block::
|
||||
|
||||
:math:`depth * batch * features if axis == 0`
|
||||
batch * features * depth if axis == -1
|
||||
|
||||
batch * depth * features if axis == 1
|
||||
|
||||
depth * batch * features if axis == 0
|
||||
|
||||
Args:
|
||||
axis (int): Features x depth if axis is -1, depth x features
|
||||
|
@ -519,7 +523,7 @@ class OneHot(Cell):
|
|||
- **indices** (Tensor) - A tensor of indices of data type mindspore.int32 and arbitrary shape.
|
||||
|
||||
Outputs:
|
||||
Tensor, the one-hot tensor of data type 'dtype' with dimension at 'axis' expanded to 'depth' and filled with
|
||||
Tensor, the one-hot tensor of data type `dtype` with dimension at `axis` expanded to `depth` and filled with
|
||||
on_value and off_value.
|
||||
|
||||
Supported Platforms:
|
||||
|
@ -563,7 +567,9 @@ class Pad(Cell):
|
|||
be extended behind of the `D` th dimension of the input tensor. The padded size of each dimension D of the
|
||||
output is:
|
||||
|
||||
:math:`paddings[D, 0]` + input_x.dim_size(D) + paddings[D, 1]`.
|
||||
.. code-block::
|
||||
|
||||
paddings[D, 0] + input_x.dim_size(D) + paddings[D, 1]
|
||||
|
||||
mode (str): Specifies padding mode. The optional values are "CONSTANT", "REFLECT", "SYMMETRIC".
|
||||
Default: "CONSTANT".
|
||||
|
@ -723,9 +729,14 @@ class Unfold(Cell):
|
|||
Outputs:
|
||||
Tensor, a 4-D tensor whose data type is same as `input_x`,
|
||||
and the shape is [out_batch, out_depth, out_row, out_col] where `out_batch` is the same as the `in_batch`.
|
||||
:math:`out_depth = ksize_row * ksize_col * in_depth`,
|
||||
:math:`out_row = (in_row - (ksize_row + (ksize_row - 1) * (rate_row - 1))) // stride_row + 1`,
|
||||
:math:`out_col = (in_col - (ksize_col + (ksize_col - 1) * (rate_col - 1))) // stride_col + 1`.
|
||||
|
||||
.. code-block::
|
||||
|
||||
out_depth = ksize_row * ksize_col * in_depth
|
||||
|
||||
out_row = (in_row - (ksize_row + (ksize_row - 1) * (rate_row - 1))) // stride_row + 1
|
||||
|
||||
out_col = (in_col - (ksize_col + (ksize_col - 1) * (rate_col - 1))) // stride_col + 1
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend``
|
||||
|
@ -867,13 +878,15 @@ def _get_matrix_diag_part_assist(x_shape, x_dtype):
|
|||
|
||||
|
||||
class MatrixDiag(Cell):
|
||||
"""
|
||||
r"""
|
||||
Returns a batched diagonal tensor with a given batched diagonal values.
|
||||
|
||||
Assume :math:`x` has :math:`k` dimensions :math:`[I, J, K, ..., N]`, then the output is a tensor of rank
|
||||
:math:`k+1` with dimensions :math:`[I, J, K, ..., N, N]` where:
|
||||
|
||||
:math:`output[i, j, k, ..., m, n] = 1{m=n} * x[i, j, k, ..., n]`.
|
||||
.. code-block::
|
||||
|
||||
output[i, j, k, ..., m, n] = 1{m=n} * x[i, j, k, ..., n]
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The diagonal values. It can be one of the following data types:
|
||||
|
@ -911,10 +924,12 @@ class MatrixDiagPart(Cell):
|
|||
r"""
|
||||
Returns the batched diagonal part of a batched tensor.
|
||||
|
||||
Assume :math:`x` has :math:`k` dimensions :math:`[I, J, K, ..., M, N]`, then the output is a tensor of rank
|
||||
Assume `x` has :math:`k` dimensions :math:`[I, J, K, ..., M, N]`, then the output is a tensor of rank
|
||||
:math:`k-1` with dimensions :math:`[I, J, K, ..., min(M, N]` where:
|
||||
|
||||
:math:`output[i, j, k, ..., n] = x[i, j, k, ..., n, n]`.
|
||||
.. code-block::
|
||||
|
||||
output[i, j, k, ..., n] = x[i, j, k, ..., n, n]
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The batched tensor. It can be one of the following data types:
|
||||
|
@ -953,13 +968,15 @@ class MatrixSetDiag(Cell):
|
|||
r"""
|
||||
Modifies the batched diagonal part of a batched tensor.
|
||||
|
||||
Assume :math:`x` has :math:`k+1` dimensions :math:`[I, J, K, ..., M, N]` and :math:`diagonal` has :math:`k`
|
||||
Assume `x` has :math:`k+1` dimensions :math:`[I, J, K, ..., M, N]` and `diagonal` has :math:`k`
|
||||
dimensions :math:`[I, J, K, ..., min(M, N)]`. Then the output is a tensor of rank :math:`k+1` with dimensions
|
||||
:math:`[I, J, K, ..., M, N]` where:
|
||||
|
||||
:math:`output[i, j, k, ..., m, n] = diagnoal[i, j, k, ..., n]` for :math:`m == n`.
|
||||
.. code-block::
|
||||
|
||||
:math:`output[i, j, k, ..., m, n] = x[i, j, k, ..., m, n]` for :math:`m != n`.
|
||||
output[i, j, k, ..., m, n] = diagnoal[i, j, k, ..., n] for m == n
|
||||
|
||||
output[i, j, k, ..., m, n] = x[i, j, k, ..., m, n] for m != n
|
||||
|
||||
Inputs:
|
||||
- **x** (Tensor) - The batched tensor. Rank k+1, where k >= 1. It can be one of the following data types:
|
||||
|
|
|
@ -105,7 +105,7 @@ class Range(Cell):
|
|||
r"""
|
||||
Creates a sequence of numbers in range [start, limit) with step size delta.
|
||||
|
||||
The size of output is \left \lfloor \frac{limit-start}{delta} \right \rfloor + 1 and `delta` is the gap
|
||||
The size of output is :math:`\left \lfloor \frac{limit-start}{delta} \right \rfloor + 1` and `delta` is the gap
|
||||
between two values in the tensor.
|
||||
|
||||
.. math::
|
||||
|
@ -827,7 +827,7 @@ def matmul_op_select(x1_shape, x2_shape, transpose_x1, transpose_x2):
|
|||
|
||||
|
||||
class MatMul(Cell):
|
||||
"""
|
||||
r"""
|
||||
Multiplies matrix `x1` by matrix `x2`.
|
||||
|
||||
- If both x1 and x2 are 1-dimensional, the dot product is returned.
|
||||
|
|
|
@ -212,23 +212,23 @@ class FakeQuantWithMinMaxObserver(UniformQuantObserver):
|
|||
r"""
|
||||
Quantization aware operation which provides the fake quantization observer function on data with min and max.
|
||||
|
||||
The running min/max :math:`x_\text{min}` and :math:`x_\text{max}` are computed as:
|
||||
The running min/max :math:`x_{min}` and :math:`x_{max}` are computed as:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{array}{ll} \\
|
||||
x_\text{min} =
|
||||
x_{min} =
|
||||
\begin{cases}
|
||||
\min(\min(X), 0)
|
||||
& \text{ if } ema = \text{False} \\
|
||||
\min((1 - c) \min(X) + \text{c } x_\text{min}, 0)
|
||||
\min((1 - c) \min(X) + \text{c } x_{min}, 0)
|
||||
& \text{ if } \text{otherwise}
|
||||
\end{cases}\\
|
||||
x_\text{max} =
|
||||
x_{max} =
|
||||
\begin{cases}
|
||||
\max(\max(X), 0)
|
||||
& \text{ if } ema = \text{False} \\
|
||||
\max((1 - c) \max(X) + \text{c } x_\text{max}, 0)
|
||||
\max((1 - c) \max(X) + \text{c } x_{max}, 0)
|
||||
& \text{ if } \text{otherwise}
|
||||
\end{cases}
|
||||
\end{array}
|
||||
|
@ -242,28 +242,28 @@ class FakeQuantWithMinMaxObserver(UniformQuantObserver):
|
|||
\begin{array}{ll} \\
|
||||
s =
|
||||
\begin{cases}
|
||||
\frac{x_\text{max} - x_\text{min}}{Q_\text{max} - Q_\text{min}}
|
||||
\frac{x_{max} - x_{min}}{Q_{max} - Q_{min}}
|
||||
& \text{ if } symmetric = \text{False} \\
|
||||
\frac{2\max(x_\text{max}, \left | x_\text{min} \right |) }{Q_\text{max} - Q_\text{min}}
|
||||
\frac{2\max(x_{max}, \left | x_{min} \right |) }{Q_{max} - Q_{min}}
|
||||
& \text{ if } \text{otherwise}
|
||||
\end{cases}\\
|
||||
zp\_min = Q_\text{min} - \frac{x_\text{min}}{scale} \\
|
||||
zp = \left \lfloor \min(Q_\text{max}, \max(Q_\text{min}, zp\_min)) + 0.5 \right \rfloor
|
||||
zp\_min = Q_{min} - \frac{x_{min}}{scale} \\
|
||||
zp = \left \lfloor \min(Q_{max}, \max(Q_{min}, zp\_min)) + 0.5 \right \rfloor
|
||||
\end{array}
|
||||
|
||||
where :math:`Q_\text{max}` and :math:`Q_\text{min}` is decided by quant_dtype, for example, if quant_dtype=INT8,
|
||||
then :math:`Q_\text{max}`=127 and :math:`Q_\text{min}`=-128.
|
||||
where :math:`Q_{max}` and :math:`Q_{min}` is decided by quant_dtype, for example, if quant_dtype=INT8,
|
||||
then :math:`Q_{max} = 127` and :math:`Q_{min} = -128`.
|
||||
|
||||
The fake quant output is computed as:
|
||||
|
||||
.. math::
|
||||
|
||||
\begin{array}{ll} \\
|
||||
u_\text{min} = (Q_\text{min} - zp) * scale \\
|
||||
u_\text{max} = (Q_\text{max} - zp) * scale \\
|
||||
u_X = \left \lfloor \frac{\min(u_\text{max}, \max(u_\text{min}, X)) - u_\text{min}}{scale}
|
||||
u_{min} = (Q_{min} - zp) * scale \\
|
||||
u_{max} = (Q_{max} - zp) * scale \\
|
||||
u_X = \left \lfloor \frac{\min(u_{max}, \max(u_{min}, X)) - u_{min}}{scale}
|
||||
+ 0.5 \right \rfloor \\
|
||||
output = u_X * scale + u_\text{min}
|
||||
output = u_X * scale + u_{min}
|
||||
\end{array}
|
||||
|
||||
|
||||
|
@ -393,7 +393,7 @@ class Conv2dBnFoldQuantOneConv(Cell):
|
|||
2D convolution which use the convolution layer statistics once to calculate BatchNormal operation folded construct.
|
||||
|
||||
This part is a more detailed overview of Conv2d operation. For more detials about Quantilization,
|
||||
please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
|
||||
Args:
|
||||
in_channels (int): The number of input channel :math:`C_{in}`.
|
||||
|
@ -594,7 +594,7 @@ class Conv2dBnFoldQuant(Cell):
|
|||
2D convolution with BatchNormal operation folded construct.
|
||||
|
||||
This part is a more detailed overview of Conv2d operation. For more detials about Quantilization,
|
||||
please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
|
||||
Args:
|
||||
in_channels (int): The number of input channel :math:`C_{in}`.
|
||||
|
@ -783,7 +783,7 @@ class Conv2dBnWithoutFoldQuant(Cell):
|
|||
2D convolution and batchnorm without fold with fake quantized construct.
|
||||
|
||||
This part is a more detailed overview of Conv2d operation. For more detials about Quantilization,
|
||||
please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
|
||||
Args:
|
||||
in_channels (int): The number of input channel :math:`C_{in}`.
|
||||
|
@ -899,7 +899,7 @@ class Conv2dQuant(Cell):
|
|||
2D convolution with fake quantized operation layer.
|
||||
|
||||
This part is a more detailed overview of Conv2d operation. For more detials about Quantilization,
|
||||
please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
|
||||
Args:
|
||||
in_channels (int): The number of input channel :math:`C_{in}`.
|
||||
|
@ -1010,7 +1010,7 @@ class DenseQuant(Cell):
|
|||
The fully connected layer with fake quantized operation.
|
||||
|
||||
This part is a more detailed overview of Dense operation. For more detials about Quantilization,
|
||||
please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
|
||||
Args:
|
||||
in_channels (int): The dimension of the input space.
|
||||
|
@ -1127,7 +1127,7 @@ class ActQuant(_QuantActivation):
|
|||
|
||||
Add the fake quantized operation to the end of activation operation, by which the output of activation operation
|
||||
will be truncated. For more detials about Quantilization,
|
||||
please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
|
||||
Args:
|
||||
activation (Cell): Activation cell.
|
||||
|
@ -1196,7 +1196,7 @@ class TensorAddQuant(Cell):
|
|||
Add fake quantized operation after TensorAdd operation.
|
||||
|
||||
This part is a more detailed overview of TensorAdd operation. For more detials about Quantilization,
|
||||
please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
|
||||
Args:
|
||||
ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999.
|
||||
|
@ -1249,7 +1249,7 @@ class MulQuant(Cell):
|
|||
Add fake quantized operation after `Mul` operation.
|
||||
|
||||
This part is a more detailed overview of `Mul` operation. For more detials about Quantilization,
|
||||
please refer to :class`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`.
|
||||
|
||||
Args:
|
||||
ema_decay (float): Exponential Moving Average algorithm parameter. Default: 0.999.
|
||||
|
|
|
@ -79,7 +79,7 @@ class ExponentialDecayLR(LearningRateSchedule):
|
|||
Inputs:
|
||||
Tensor. The current step number.
|
||||
|
||||
Returns:
|
||||
Outputs:
|
||||
Tensor. The learning rate value for the current step.
|
||||
|
||||
Examples:
|
||||
|
@ -137,7 +137,7 @@ class NaturalExpDecayLR(LearningRateSchedule):
|
|||
Inputs:
|
||||
Tensor. The current step number.
|
||||
|
||||
Returns:
|
||||
Outputs:
|
||||
Tensor. The learning rate value for the current step.
|
||||
|
||||
Examples:
|
||||
|
@ -196,7 +196,7 @@ class InverseDecayLR(LearningRateSchedule):
|
|||
Inputs:
|
||||
Tensor. The current step number.
|
||||
|
||||
Returns:
|
||||
Outputs:
|
||||
Tensor. The learning rate value for the current step.
|
||||
|
||||
Examples:
|
||||
|
@ -244,7 +244,7 @@ class CosineDecayLR(LearningRateSchedule):
|
|||
Inputs:
|
||||
Tensor. The current step number.
|
||||
|
||||
Returns:
|
||||
Outputs:
|
||||
Tensor. The learning rate value for the current step.
|
||||
|
||||
Examples:
|
||||
|
@ -311,7 +311,7 @@ class PolynomialDecayLR(LearningRateSchedule):
|
|||
Inputs:
|
||||
Tensor. The current step number.
|
||||
|
||||
Returns:
|
||||
Outputs:
|
||||
Tensor. The learning rate value for the current step.
|
||||
|
||||
Examples:
|
||||
|
@ -381,7 +381,7 @@ class WarmUpLR(LearningRateSchedule):
|
|||
Inputs:
|
||||
Tensor. The current step number.
|
||||
|
||||
Returns:
|
||||
Outputs:
|
||||
Tensor. The learning rate value for the current step.
|
||||
|
||||
Examples:
|
||||
|
|
|
@ -57,7 +57,7 @@ class LARS(Optimizer):
|
|||
|
||||
.. math::
|
||||
|
||||
\begin{array}\\
|
||||
\begin{array}{ll} \\
|
||||
\lambda = \frac{\theta \text{ * } || \omega || }{|| g_{t} || \text{ + } \delta \text{ * } || \omega || } \\
|
||||
\lambda =
|
||||
\begin{cases}
|
||||
|
|
Loading…
Reference in New Issue