forked from mindspore-Ecosystem/mindspore
commit
2938d1273f
|
@ -38,7 +38,7 @@
|
|||
|
||||
增强的深度超分辨率网络(EDSR)是2017年提出的单图超分辨重建网络,在NTIRE2017超分辨重建比赛中获取第一名。它通过删除传统剩余网络中不必要的模块(BatchNorm),扩大模型的大小,同时应用了稳定训练的方法进行优化,显著提升了性能。
|
||||
|
||||
[论文](https://arxiv.org/pdf/1707.02921.pdf):Lim B , Son S , Kim H , et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017.
|
||||
论文: [Enhanced Deep Residual Networks for Single Image Super-Resolution](https://arxiv.org/pdf/1707.02921.pdf): Lim B , Son S , Kim H , et al. Enhanced Deep Residual Networks for Single Image Super-Resolution[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2017.
|
||||
|
||||
# 模型架构
|
||||
|
||||
|
@ -54,6 +54,44 @@ EDSR是由多个优化后的residual blocks串联而成,相比原始版本的r
|
|||
- 测试集:349.53M,共100组图像(无HR图)
|
||||
- 数据格式:PNG图片文件文件
|
||||
- 注:数据将在src/dataset.py中处理。
|
||||
- 数据目录树:官网下载数据后,解压压缩包,训练和验证所需的数据目录结构如下:
|
||||
|
||||
```shell
|
||||
├─DIV2K_train_HR
|
||||
│ ├─0001.png
|
||||
│ ├─...
|
||||
│ └─0800.png
|
||||
├─DIV2K_train_LR_bicubic
|
||||
│ ├─X2
|
||||
│ │ ├─0001x2.png
|
||||
│ │ ├─...
|
||||
│ │ └─0800x2.png
|
||||
│ ├─X3
|
||||
│ │ ├─0001x3.png
|
||||
│ │ ├─...
|
||||
│ │ └─0800x3.png
|
||||
│ └─X4
|
||||
│ ├─0001x4.png
|
||||
│ ├─...
|
||||
│ └─0800x4.png
|
||||
├─DIV2K_valid_LR_bicubic
|
||||
│ ├─0801.png
|
||||
│ ├─...
|
||||
│ └─0900.png
|
||||
└─DIV2K_valid_LR_bicubic
|
||||
├─X2
|
||||
│ ├─0801x2.png
|
||||
│ ├─...
|
||||
│ └─0900x2.png
|
||||
├─X3
|
||||
│ ├─0801x3.png
|
||||
│ ├─...
|
||||
│ └─0900x3.png
|
||||
└─X4
|
||||
├─0801x4.png
|
||||
├─...
|
||||
└─0900x4.png
|
||||
```
|
||||
|
||||
# 特性
|
||||
|
||||
|
@ -81,66 +119,66 @@ EDSR是由多个优化后的residual blocks串联而成,相比原始版本的r
|
|||
|
||||
```python
|
||||
# 运行训练示例(EDSR(x2) in the paper)
|
||||
python train.py --batch_size 16 --scale 2 --config_path DIV2K_config.yaml > train.log 2>&1 &
|
||||
python train.py --batch_size 16 --config_path DIV2K_config.yaml --scale 2 --data_path [DIV2K path] --output_path [path to save .ckpt] > train.log 2>&1 &
|
||||
# 运行训练示例(EDSR(x3) in the paper - from EDSR(x2))
|
||||
python train.py --batch_size 16 --scale 3 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path] train.log 2>&1 &
|
||||
python train.py --batch_size 16 --config_path DIV2K_config.yaml --scale 3 --data_path [DIV2K path] --output_path [path to save .ckpt] --pre_trained [pre-trained EDSR_x2 model path] train.log 2>&1 &
|
||||
# 运行训练示例(EDSR(x4) in the paper - from EDSR(x2))
|
||||
python train.py --batch_size 16 --scale 4 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path] train.log 2>&1 &
|
||||
python train.py --batch_size 16 --config_path DIV2K_config.yaml --scale 4 --data_path [DIV2K path] --output_path [path to save .ckpt] --pre_trained [pre-trained EDSR_x2 model path] train.log 2>&1 &
|
||||
```
|
||||
|
||||
- Ascend-910处理器环境运行8卡训练DIV2K
|
||||
|
||||
```python
|
||||
# 运行分布式训练示例(EDSR(x2) in the paper)
|
||||
bash scripts/run_train.sh rank_table.json --scale 2 --config_path DIV2K_config.yaml
|
||||
bash scripts/run_train.sh rank_table.json --config_path DIV2K_config.yaml --scale 2 --data_path [DIV2K path] --output_path [path to save .ckpt]
|
||||
# 运行分布式训练示例(EDSR(x3) in the paper)
|
||||
bash scripts/run_train.sh rank_table.json --scale 3 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path]
|
||||
bash scripts/run_train.sh rank_table.json --config_path DIV2K_config.yaml --scale 3 --data_path [DIV2K path] --output_path [path to save .ckpt] --pre_trained [pre-trained EDSR_x2 model path]
|
||||
# 运行分布式训练示例(EDSR(x4) in the paper)
|
||||
bash scripts/run_train.sh rank_table.json --scale 4 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path]
|
||||
bash scripts/run_train.sh rank_table.json --config_path DIV2K_config.yaml --scale 4 --data_path [DIV2K path] --output_path [path to save .ckpt] --pre_trained [pre-trained EDSR_x2 model path]
|
||||
```
|
||||
|
||||
- Ascend-910处理器环境运行单卡评估DIV2K
|
||||
|
||||
```python
|
||||
# 运行评估示例(EDSR(x2) in the paper)
|
||||
python eval.py --scale 2 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path] > train.log 2>&1 &
|
||||
python eval.py --config_path DIV2K_config.yaml --scale 2 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x2 model path] > train.log 2>&1 &
|
||||
# 运行评估示例(EDSR(x3) in the paper)
|
||||
python eval.py --scale 3 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x3 model path] > train.log 2>&1 &
|
||||
python eval.py --config_path DIV2K_config.yaml --scale 3 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x3 model path] > train.log 2>&1 &
|
||||
# 运行评估示例(EDSR(x4) in the paper)
|
||||
python eval.py --scale 4 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x4 model path] > train.log 2>&1 &
|
||||
python eval.py --config_path DIV2K_config.yaml --scale 4 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x4 model path] > train.log 2>&1 &
|
||||
```
|
||||
|
||||
- Ascend-910处理器环境运行8卡评估DIV2K
|
||||
|
||||
```python
|
||||
# 运行分布式评估示例(EDSR(x2) in the paper)
|
||||
bash scripts/run_eval.sh rank_table.json --scale 2 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x2 model path]
|
||||
bash scripts/run_eval.sh rank_table.json --config_path DIV2K_config.yaml --scale 2 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x2 model path]
|
||||
# 运行分布式评估示例(EDSR(x3) in the paper)
|
||||
bash scripts/run_eval.sh rank_table.json --scale 3 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x3 model path]
|
||||
bash scripts/run_eval.sh rank_table.json --config_path DIV2K_config.yaml --scale 3 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x3 model path]
|
||||
# 运行分布式评估示例(EDSR(x4) in the paper)
|
||||
bash scripts/run_eval.sh rank_table.json --scale 4 --config_path DIV2K_config.yaml --pre_trained [pre-trained EDSR_x4 model path]
|
||||
bash scripts/run_eval.sh rank_table.json --config_path DIV2K_config.yaml --scale 4 --data_path [DIV2K path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x4 model path]
|
||||
```
|
||||
|
||||
- Ascend-910处理器环境运行单卡评估benchmark
|
||||
|
||||
```python
|
||||
# 运行评估示例(EDSR(x2) in the paper)
|
||||
python eval.py --scale 2 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x2 model path] > train.log 2>&1 &
|
||||
python eval.py --config_path benchmark_config.yaml --scale 2 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x2 model path] > train.log 2>&1 &
|
||||
# 运行评估示例(EDSR(x3) in the paper)
|
||||
python eval.py --scale 3 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x3 model path] > train.log 2>&1 &
|
||||
python eval.py --config_path benchmark_config.yaml --scale 3 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x3 model path] > train.log 2>&1 &
|
||||
# 运行评估示例(EDSR(x4) in the paper)
|
||||
python eval.py --scale 4 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x4 model path] > train.log 2>&1 &
|
||||
python eval.py --config_path benchmark_config.yaml --scale 4 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x4 model path] > train.log 2>&1 &
|
||||
```
|
||||
|
||||
- Ascend-910处理器环境运行8卡评估benchmark
|
||||
|
||||
```python
|
||||
# 运行分布式评估示例(EDSR(x2) in the paper)
|
||||
bash scripts/run_eval.sh rank_table.json --scale 2 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x2 model path]
|
||||
bash scripts/run_eval.sh rank_table.json --config_path benchmark_config.yaml --scale 2 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x2 model path]
|
||||
# 运行分布式评估示例(EDSR(x3) in the paper)
|
||||
bash scripts/run_eval.sh rank_table.json --scale 3 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x3 model path]
|
||||
bash scripts/run_eval.sh rank_table.json --config_path benchmark_config.yaml --scale 3 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x3 model path]
|
||||
# 运行分布式评估示例(EDSR(x4) in the paper)
|
||||
bash scripts/run_eval.sh rank_table.json --scale 4 --config_path benchmark_config.yaml --pre_trained [pre-trained EDSR_x4 model path]
|
||||
bash scripts/run_eval.sh rank_table.json --config_path benchmark_config.yaml --scale 4 --data_path [benchmark path] --output_path [path to save sr] --pre_trained [pre-trained EDSR_x4 model path]
|
||||
```
|
||||
|
||||
- Ascend-310处理器环境运行单卡评估DIV2K
|
||||
|
|
|
@ -47,8 +47,8 @@ class FolderImagePair:
|
|||
self.reader = reader
|
||||
self.pair_keys, self.image_pairs = self.scan_pair(self.dir_patterns)
|
||||
|
||||
@classmethod
|
||||
def scan_pair(cls, dir_patterns):
|
||||
@staticmethod
|
||||
def scan_pair(dir_patterns):
|
||||
"""
|
||||
scan pair
|
||||
"""
|
||||
|
@ -105,7 +105,8 @@ class LrHrImages(FolderImagePair):
|
|||
|
||||
def __getitem__(self, idx):
|
||||
_, *images = super(LrHrImages, self).__getitem__(idx)
|
||||
return images
|
||||
return tuple(images)
|
||||
|
||||
|
||||
class _BasePatchCutter:
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue