extend stack more than 4 dimensions

This commit is contained in:
fuzhiye 2021-01-15 11:00:44 +08:00
parent 16d19f2d26
commit 280b84b7aa
13 changed files with 147 additions and 278 deletions

View File

@ -13,21 +13,16 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_FP32_STACK_H_
#define MINDSPORE_LITE_NNACL_FP32_STACK_H_
#include "nnacl/base/stack_base.h"
#include "nnacl/op_base.h"
#ifdef __cplusplus
extern "C" {
#endif
void DoStack(const float *const *inputs, size_t input_num, const int *in_shape, size_t shape_size, int axis,
float *output);
void DoStackInt32(const int32_t *const *inputs, size_t input_num, const int *in_shape, size_t shape_size, int axis,
int32_t *output);
void DoStackOneInput(const int8_t *input, int8_t *output, size_t data_size);
#ifdef __cplusplus
void Stack(char **inputs, char *output, size_t input_num, size_t copy_size, size_t outter_size) {
size_t in_offset = 0;
size_t out_offset = 0;
for (size_t i = 0; i < outter_size; ++i) {
for (size_t j = 0; j < input_num; ++j) {
memcpy(output + out_offset, inputs[j] + in_offset, copy_size);
out_offset += copy_size;
}
in_offset += copy_size;
}
}
#endif
#endif // MINDSPORE_LITE_NNACL_FP32_STACK_H_

View File

@ -13,21 +13,18 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_NNACL_FP16_STACK_FP16_H_
#define MINDSPORE_LITE_NNACL_FP16_STACK_FP16_H_
#ifndef MINDSPORE_LITE_NNACL_STACK_H_
#define MINDSPORE_LITE_NNACL_STACK_H_
#include <string.h>
#include "nnacl/op_base.h"
#ifdef ENABLE_NEON
#include <arm_neon.h>
#endif
#include "nnacl/stack_parameter.h"
#ifdef __cplusplus
extern "C" {
#endif
void DoStackFp16(const float16_t *const *inputs, size_t input_num, int *in_shape, size_t shape_size, int axis,
float16_t *output);
void Stack(char **inputs, char *output, size_t input_num, size_t copy_size, size_t outter_size);
#ifdef __cplusplus
}
#endif
#endif // MINDSPORE_LITE_NNACL_FP16_STACK_FP16_H_
#endif // MINDSPORE_LITE_NNACL_STACK_H_

View File

@ -1,54 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/fp16/stack_fp16.h"
#include "nnacl/common_func.h"
size_t Fp16GetStackCopyNum(int axis, int *in_shape, size_t shape_size) {
size_t one_input_size = 1;
for (size_t i = 0; i < shape_size; ++i) {
one_input_size *= in_shape[i];
}
int in_strides[4];
ComputeStrides(in_shape, in_strides, shape_size);
size_t copy_num = axis > 0 ? in_strides[axis - 1] : one_input_size;
return copy_num;
}
size_t Fp16GetStackPreAxisCount2(const int *in_shape, int axis) {
size_t pre_axis_count = 1;
for (size_t i = 0; i < axis; ++i) {
pre_axis_count *= in_shape[i];
}
return pre_axis_count;
}
void DoStackFp16(const float16_t *const *inputs, size_t input_num, int *in_shape, size_t shape_size, int axis,
float16_t *output) {
size_t copy_num = Fp16GetStackCopyNum(axis, in_shape, shape_size);
size_t copy_size = copy_num * sizeof(float16_t);
size_t pre_axis_count = Fp16GetStackPreAxisCount2(in_shape, axis);
size_t in_offset = 0;
size_t out_offset = 0;
for (size_t i = 0; i < pre_axis_count; ++i) {
for (size_t j = 0; j < input_num; ++j) {
memcpy(output + out_offset, inputs[j] + in_offset, copy_size);
out_offset += copy_num;
}
in_offset += copy_num;
}
}

View File

@ -1,72 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "nnacl/fp32/stack_fp32.h"
#include "nnacl/common_func.h"
size_t GetStackCopyNum(int axis, const int *in_shape, size_t shape_size) {
size_t one_input_size = 1;
for (size_t i = 0; i < shape_size; ++i) {
one_input_size *= in_shape[i];
}
int in_strides[4];
ComputeStrides(in_shape, in_strides, shape_size);
size_t copy_num = axis > 0 ? in_strides[axis - 1] : one_input_size;
return copy_num;
}
size_t GetStackPreAxisCount(const int *in_shape, int axis) {
size_t pre_axis_count = 1;
for (size_t i = 0; i < axis; ++i) {
pre_axis_count *= in_shape[i];
}
return pre_axis_count;
}
void DoStack(const float *const *inputs, size_t input_num, const int *in_shape, size_t shape_size, int axis,
float *output) {
size_t copy_num = GetStackCopyNum(axis, in_shape, shape_size);
size_t copy_size = copy_num * sizeof(float);
size_t pre_axis_count = GetStackPreAxisCount(in_shape, axis);
size_t in_offset = 0;
size_t out_offset = 0;
for (size_t i = 0; i < pre_axis_count; ++i) {
for (size_t j = 0; j < input_num; ++j) {
memcpy(output + out_offset, inputs[j] + in_offset, copy_size);
out_offset += copy_num;
}
in_offset += copy_num;
}
}
void DoStackInt32(const int32_t *const *inputs, size_t input_num, const int *in_shape, size_t shape_size, int axis,
int32_t *output) {
size_t copy_num = GetStackCopyNum(axis, in_shape, shape_size);
size_t copy_size = copy_num * sizeof(int32_t);
size_t pre_axis_count = GetStackPreAxisCount(in_shape, axis);
size_t in_offset = 0;
size_t out_offset = 0;
for (size_t i = 0; i < pre_axis_count; ++i) {
for (size_t j = 0; j < input_num; ++j) {
memcpy(output + out_offset, inputs[j] + in_offset, copy_size);
out_offset += copy_num;
}
in_offset += copy_num;
}
}
void DoStackOneInput(const int8_t *input, int8_t *output, size_t data_size) { memcpy(output, input, data_size); }

View File

@ -60,6 +60,7 @@
#define kNHWC_C 3
#define kInputSize1 2
#define kInputSize2 3
#define MAX_LEN 256
typedef enum LiteDataType {
kDataTypeFloat,

View File

@ -23,8 +23,6 @@
#include "nnacl/conv_parameter.h"
#include "nnacl/op_base.h"
#define MAX_LEN 256
#ifdef __cplusplus
extern "C" {
#endif

View File

@ -0,0 +1,90 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/base/stack_base.h"
#include <vector>
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "nnacl/base/stack_base.h"
#include "nnacl/stack_parameter.h"
#include "include/errorcode.h"
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Stack;
namespace mindspore::kernel {
static int GetCopyNum(const std::vector<int> &in_shape, int axis, int n_dim) {
int copy_num = 1;
if (axis > 0) {
for (int j = n_dim - 1; j > axis - 1; j--) {
copy_num *= in_shape[j];
}
} else {
for (int i = 0; i < n_dim; ++i) {
copy_num *= in_shape[i];
}
}
return copy_num;
}
static size_t GetOutterSize(const std::vector<int> &in_shape, int axis) {
size_t outter_size = 1;
for (int i = 0; i < axis; ++i) {
outter_size *= in_shape[i];
}
return outter_size;
}
int StackBaseCPUKernel::ReSize() {
auto param = reinterpret_cast<StackParameter *>(op_parameter_);
auto input0_shape = in_tensors_.front()->shape();
axis_ = param->axis_ < 0 ? param->axis_ + input0_shape.size() + 1 : param->axis_;
auto input_nums = in_tensors_.size();
if (input_nums == 1) {
copy_size_ = in_tensors_.front()->Size();
} else {
MS_ASSERT(input_nums > 1);
copy_size_ = GetCopyNum(input0_shape, axis_, input0_shape.size()) * data_type_size_;
outter_size_ = GetOutterSize(input0_shape, axis_);
}
return RET_OK;
}
int StackBaseCPUKernel::Init() {
auto input0_tensor = in_tensors_.front();
data_type_size_ = input0_tensor->Size() / input0_tensor->ElementsNum();
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int StackBaseCPUKernel::Run() {
size_t inputs_num = in_tensors_.size();
char **all_inputs = static_cast<char **>(context_->allocator->Malloc(inputs_num * sizeof(char *)));
for (size_t j = 0; j < inputs_num; ++j) {
all_inputs[j] = reinterpret_cast<char *>(in_tensors_.at(j)->data_c());
}
auto output_data = reinterpret_cast<char *>(out_tensors_.at(0)->data_c());
Stack(all_inputs, output_data, in_tensors_.size(), copy_size_, outter_size_);
context_->allocator->Free(all_inputs);
return RET_OK;
}
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Stack, LiteKernelCreator<StackBaseCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Stack, LiteKernelCreator<StackBaseCPUKernel>)
} // namespace mindspore::kernel

View File

@ -13,21 +13,22 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_STACK_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_STACK_H_
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_STACK_BASE_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_STACK_BASE_H_
#include <vector>
#include "src/lite_kernel.h"
#include "nnacl/stack_parameter.h"
using mindspore::lite::InnerContext;
namespace mindspore::kernel {
class StackCPUKernel : public LiteKernel {
class StackBaseCPUKernel : public LiteKernel {
public:
StackCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
StackBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
~StackCPUKernel() = default;
~StackBaseCPUKernel() override = default;
int Init() override;
int ReSize() override;
@ -35,7 +36,9 @@ class StackCPUKernel : public LiteKernel {
protected:
int axis_ = 0;
size_t data_type_size_ = 0;
size_t copy_size_ = 0;
size_t outter_size_ = 1;
};
} // namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_STACK_H_
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_STACK_BASE_H_

View File

@ -21,7 +21,7 @@
#include "include/errorcode.h"
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
#include "nnacl/fp16/cast_fp16.h"
#include "nnacl/fp16/stack_fp16.h"
#include "nnacl/base/stack_base.h"
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
@ -29,25 +29,18 @@ using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Stack;
namespace mindspore::kernel {
int StackFp16CPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
void StackFp16CPUKernel::InitMallocFlags() {
malloc_buffers_.resize(in_tensors_.size());
for (size_t i = 0; i < in_tensors_.size(); ++i) {
malloc_buffers_.at(i) = in_tensors_.at(i)->data_type() == kNumberTypeFloat32;
}
malloc_out = out_tensors_.at(0)->data_type() == kNumberTypeFloat32;
malloc_out_ = out_tensors_.at(0)->data_type() == kNumberTypeFloat32;
}
int StackFp16CPUKernel::MallocAssignBuffer() {
buffers_.resize(in_tensors_.size(), nullptr);
for (size_t i = 0; i < in_tensors_.size(); ++i) {
buffers_.at(i) = ConvertInputFp32toFp16(in_tensors_.at(i), context_);
buffers_.at(i) = reinterpret_cast<char *>(ConvertInputFp32toFp16(in_tensors_.at(i), context_));
if (buffers_.at(i) == nullptr) {
return RET_ERROR;
}
@ -68,33 +61,33 @@ void StackFp16CPUKernel::FreeBuffer() {
buffers_.at(i) = nullptr;
}
}
if (malloc_out && out_buffer_ != nullptr) {
if (malloc_out_ && out_buffer_ != nullptr) {
context_->allocator->Free(out_buffer_);
out_buffer_ = nullptr;
}
}
int StackFp16CPUKernel::Run() {
size_t inputs_num = in_tensors_.size();
auto input0 = in_tensors_.at(0);
if (inputs_num == 1) {
memcpy(out_tensors_.at(0)->MutableData(), input0->MutableData(), input0->Size());
int StackFp16CPUKernel::Init() {
data_type_size_ = sizeof(float16_t);
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int StackFp16CPUKernel::Run() {
InitMallocFlags();
auto ret = MallocAssignBuffer();
if (ret != RET_OK) {
FreeBuffer();
return ret;
}
auto input0_shape = input0->shape();
DoStackFp16(buffers_.data(), inputs_num, input0_shape.data(), input0_shape.size(), axis_, out_buffer_);
Stack(buffers_.data(), reinterpret_cast<char *>(out_buffer_), in_tensors_.size(), copy_size_, outter_size_);
// if output tensor is fp32, we need to transform
if (malloc_out) {
if (malloc_out_) {
auto out_tensor = out_tensors_.at(0);
Float16ToFloat32(out_buffer_, reinterpret_cast<float *>(out_tensor->MutableData()), out_tensor->ElementsNum());
}
FreeBuffer();
return RET_OK;
}

View File

@ -18,16 +18,16 @@
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/fp32/stack_fp32.h"
#include "src/runtime/kernel/arm/base/stack_base.h"
namespace mindspore::kernel {
class StackFp16CPUKernel : public StackCPUKernel {
class StackFp16CPUKernel : public StackBaseCPUKernel {
public:
StackFp16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
const mindspore::lite::PrimitiveC *primitive)
: StackCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~StackFp16CPUKernel() = default;
: StackBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
~StackFp16CPUKernel() override = default;
int Init() override;
int Run() override;
@ -38,9 +38,9 @@ class StackFp16CPUKernel : public StackCPUKernel {
private:
std::vector<bool> malloc_buffers_;
std::vector<float16_t *> buffers_;
std::vector<char *> buffers_;
float16_t *out_buffer_;
bool malloc_out;
bool malloc_out_;
};
} // namespace mindspore::kernel

View File

@ -114,7 +114,7 @@ int ConvolutionDelegateCPUKernel::Init() {
}
int ConvolutionDelegateCPUKernel::ReSize() {
// Updata shape info of input and output
// Update shape info of input and output
SetInputOutputShapeInfo(reinterpret_cast<ConvParameter *>(op_parameter_), in_tensors_.front(), out_tensors_.front(),
context_);
if (conv_kernel_ == nullptr) {

View File

@ -1,81 +0,0 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp32/stack_fp32.h"
#include <vector>
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "nnacl/fp32/stack_fp32.h"
#include "nnacl/stack_parameter.h"
#include "include/errorcode.h"
using mindspore::lite::KernelRegistrar;
using mindspore::lite::RET_ERROR;
using mindspore::lite::RET_OK;
using mindspore::schema::PrimitiveType_Stack;
namespace mindspore::kernel {
int StackCPUKernel::ReSize() {
StackParameter *param = reinterpret_cast<StackParameter *>(op_parameter_);
auto input0_shape = in_tensors_.at(0)->shape();
axis_ = param->axis_ < 0 ? param->axis_ + input0_shape.size() + 1 : param->axis_;
return RET_OK;
}
int StackCPUKernel::Init() {
if (!InferShapeDone()) {
return RET_OK;
}
return ReSize();
}
int StackCPUKernel::Run() {
size_t inputs_num = in_tensors_.size();
auto input0 = in_tensors_.at(0);
if (inputs_num == 1) {
auto *output_data = reinterpret_cast<int8_t *>(out_tensors_.at(0)->MutableData());
MS_ASSERT(output_data);
auto *input_data = reinterpret_cast<const int8_t *>(input0->MutableData());
MS_ASSERT(input_data);
DoStackOneInput(input_data, output_data, input0->Size());
return RET_OK;
}
auto input0_shape = in_tensors_.at(0)->shape();
if (in_tensors_.at(0)->data_type() == kNumberTypeFloat32 || in_tensors_.at(0)->data_type() == kNumberTypeFloat) {
auto *output_data = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData());
MS_ASSERT(output_data);
float *inputs[inputs_num];
for (size_t i = 0; i < inputs_num; ++i) {
inputs[i] = reinterpret_cast<float *>(in_tensors_.at(i)->MutableData());
MS_ASSERT(inputs[i]);
}
DoStack(inputs, inputs_num, input0_shape.data(), input0_shape.size(), axis_, output_data);
} else {
auto *output_data = reinterpret_cast<int32_t *>(out_tensors_.at(0)->MutableData());
MS_ASSERT(output_data);
int32_t *inputs[inputs_num];
for (size_t i = 0; i < inputs_num; ++i) {
inputs[i] = reinterpret_cast<int32_t *>(in_tensors_.at(i)->MutableData());
MS_ASSERT(inputs[i]);
}
DoStackInt32(inputs, inputs_num, input0_shape.data(), input0_shape.size(), axis_, output_data);
}
return RET_OK;
}
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Stack, LiteKernelCreator<StackCPUKernel>)
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Stack, LiteKernelCreator<StackCPUKernel>)
} // namespace mindspore::kernel

View File

@ -14,7 +14,7 @@
* limitations under the License.
*/
#include "common/common_test.h"
#include "mindspore/lite/nnacl/fp32/stack_fp32.h"
#include "mindspore/lite/nnacl/base/stack_base.h"
namespace mindspore {
class StackTestFp32 : public mindspore::CommonTest {
@ -26,16 +26,15 @@ TEST_F(StackTestFp32, StackTest1) {
float input0[6] = {1, 2, 3, 10, 20, 30};
float input1[6] = {4, 5, 6, 40, 50, 60};
float input2[6] = {7, 8, 9, 70, 80, 90};
float *input[3];
input[0] = input0;
input[1] = input1;
input[2] = input2;
char *input[3];
input[0] = reinterpret_cast<char *>(input0);
input[1] = reinterpret_cast<char *>(input1);
input[2] = reinterpret_cast<char *>(input2);
std::vector<int> shape = {2, 3};
int axis = 2;
constexpr int kOutSize = 18;
float expect_out[kOutSize] = {1, 4, 7, 2, 5, 8, 3, 6, 9, 10, 40, 70, 20, 50, 80, 30, 60, 90};
float output[kOutSize];
DoStack(input, 3, shape.data(), shape.size(), axis, output);
Stack(input, reinterpret_cast<char *>(output), 3, 4, 6);
for (float i : output) {
std::cout << i << " ";
}