forked from mindspore-Ecosystem/mindspore
extend stack more than 4 dimensions
This commit is contained in:
parent
16d19f2d26
commit
280b84b7aa
|
@ -13,21 +13,16 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_NNACL_FP32_STACK_H_
|
||||
#define MINDSPORE_LITE_NNACL_FP32_STACK_H_
|
||||
#include "nnacl/base/stack_base.h"
|
||||
|
||||
#include "nnacl/op_base.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
void DoStack(const float *const *inputs, size_t input_num, const int *in_shape, size_t shape_size, int axis,
|
||||
float *output);
|
||||
void DoStackInt32(const int32_t *const *inputs, size_t input_num, const int *in_shape, size_t shape_size, int axis,
|
||||
int32_t *output);
|
||||
void DoStackOneInput(const int8_t *input, int8_t *output, size_t data_size);
|
||||
#ifdef __cplusplus
|
||||
void Stack(char **inputs, char *output, size_t input_num, size_t copy_size, size_t outter_size) {
|
||||
size_t in_offset = 0;
|
||||
size_t out_offset = 0;
|
||||
for (size_t i = 0; i < outter_size; ++i) {
|
||||
for (size_t j = 0; j < input_num; ++j) {
|
||||
memcpy(output + out_offset, inputs[j] + in_offset, copy_size);
|
||||
out_offset += copy_size;
|
||||
}
|
||||
in_offset += copy_size;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // MINDSPORE_LITE_NNACL_FP32_STACK_H_
|
|
@ -13,21 +13,18 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_NNACL_FP16_STACK_FP16_H_
|
||||
#define MINDSPORE_LITE_NNACL_FP16_STACK_FP16_H_
|
||||
#ifndef MINDSPORE_LITE_NNACL_STACK_H_
|
||||
#define MINDSPORE_LITE_NNACL_STACK_H_
|
||||
|
||||
#include <string.h>
|
||||
#include "nnacl/op_base.h"
|
||||
#ifdef ENABLE_NEON
|
||||
#include <arm_neon.h>
|
||||
#endif
|
||||
#include "nnacl/stack_parameter.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
void DoStackFp16(const float16_t *const *inputs, size_t input_num, int *in_shape, size_t shape_size, int axis,
|
||||
float16_t *output);
|
||||
void Stack(char **inputs, char *output, size_t input_num, size_t copy_size, size_t outter_size);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // MINDSPORE_LITE_NNACL_FP16_STACK_FP16_H_
|
||||
#endif // MINDSPORE_LITE_NNACL_STACK_H_
|
|
@ -1,54 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "nnacl/fp16/stack_fp16.h"
|
||||
#include "nnacl/common_func.h"
|
||||
|
||||
size_t Fp16GetStackCopyNum(int axis, int *in_shape, size_t shape_size) {
|
||||
size_t one_input_size = 1;
|
||||
for (size_t i = 0; i < shape_size; ++i) {
|
||||
one_input_size *= in_shape[i];
|
||||
}
|
||||
int in_strides[4];
|
||||
ComputeStrides(in_shape, in_strides, shape_size);
|
||||
|
||||
size_t copy_num = axis > 0 ? in_strides[axis - 1] : one_input_size;
|
||||
return copy_num;
|
||||
}
|
||||
|
||||
size_t Fp16GetStackPreAxisCount2(const int *in_shape, int axis) {
|
||||
size_t pre_axis_count = 1;
|
||||
for (size_t i = 0; i < axis; ++i) {
|
||||
pre_axis_count *= in_shape[i];
|
||||
}
|
||||
return pre_axis_count;
|
||||
}
|
||||
|
||||
void DoStackFp16(const float16_t *const *inputs, size_t input_num, int *in_shape, size_t shape_size, int axis,
|
||||
float16_t *output) {
|
||||
size_t copy_num = Fp16GetStackCopyNum(axis, in_shape, shape_size);
|
||||
size_t copy_size = copy_num * sizeof(float16_t);
|
||||
size_t pre_axis_count = Fp16GetStackPreAxisCount2(in_shape, axis);
|
||||
size_t in_offset = 0;
|
||||
size_t out_offset = 0;
|
||||
for (size_t i = 0; i < pre_axis_count; ++i) {
|
||||
for (size_t j = 0; j < input_num; ++j) {
|
||||
memcpy(output + out_offset, inputs[j] + in_offset, copy_size);
|
||||
out_offset += copy_num;
|
||||
}
|
||||
in_offset += copy_num;
|
||||
}
|
||||
}
|
|
@ -1,72 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "nnacl/fp32/stack_fp32.h"
|
||||
#include "nnacl/common_func.h"
|
||||
|
||||
size_t GetStackCopyNum(int axis, const int *in_shape, size_t shape_size) {
|
||||
size_t one_input_size = 1;
|
||||
for (size_t i = 0; i < shape_size; ++i) {
|
||||
one_input_size *= in_shape[i];
|
||||
}
|
||||
int in_strides[4];
|
||||
ComputeStrides(in_shape, in_strides, shape_size);
|
||||
|
||||
size_t copy_num = axis > 0 ? in_strides[axis - 1] : one_input_size;
|
||||
return copy_num;
|
||||
}
|
||||
|
||||
size_t GetStackPreAxisCount(const int *in_shape, int axis) {
|
||||
size_t pre_axis_count = 1;
|
||||
for (size_t i = 0; i < axis; ++i) {
|
||||
pre_axis_count *= in_shape[i];
|
||||
}
|
||||
return pre_axis_count;
|
||||
}
|
||||
|
||||
void DoStack(const float *const *inputs, size_t input_num, const int *in_shape, size_t shape_size, int axis,
|
||||
float *output) {
|
||||
size_t copy_num = GetStackCopyNum(axis, in_shape, shape_size);
|
||||
size_t copy_size = copy_num * sizeof(float);
|
||||
size_t pre_axis_count = GetStackPreAxisCount(in_shape, axis);
|
||||
size_t in_offset = 0;
|
||||
size_t out_offset = 0;
|
||||
for (size_t i = 0; i < pre_axis_count; ++i) {
|
||||
for (size_t j = 0; j < input_num; ++j) {
|
||||
memcpy(output + out_offset, inputs[j] + in_offset, copy_size);
|
||||
out_offset += copy_num;
|
||||
}
|
||||
in_offset += copy_num;
|
||||
}
|
||||
}
|
||||
|
||||
void DoStackInt32(const int32_t *const *inputs, size_t input_num, const int *in_shape, size_t shape_size, int axis,
|
||||
int32_t *output) {
|
||||
size_t copy_num = GetStackCopyNum(axis, in_shape, shape_size);
|
||||
size_t copy_size = copy_num * sizeof(int32_t);
|
||||
size_t pre_axis_count = GetStackPreAxisCount(in_shape, axis);
|
||||
size_t in_offset = 0;
|
||||
size_t out_offset = 0;
|
||||
for (size_t i = 0; i < pre_axis_count; ++i) {
|
||||
for (size_t j = 0; j < input_num; ++j) {
|
||||
memcpy(output + out_offset, inputs[j] + in_offset, copy_size);
|
||||
out_offset += copy_num;
|
||||
}
|
||||
in_offset += copy_num;
|
||||
}
|
||||
}
|
||||
|
||||
void DoStackOneInput(const int8_t *input, int8_t *output, size_t data_size) { memcpy(output, input, data_size); }
|
|
@ -60,6 +60,7 @@
|
|||
#define kNHWC_C 3
|
||||
#define kInputSize1 2
|
||||
#define kInputSize2 3
|
||||
#define MAX_LEN 256
|
||||
|
||||
typedef enum LiteDataType {
|
||||
kDataTypeFloat,
|
||||
|
|
|
@ -23,8 +23,6 @@
|
|||
#include "nnacl/conv_parameter.h"
|
||||
#include "nnacl/op_base.h"
|
||||
|
||||
#define MAX_LEN 256
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
|
|
@ -0,0 +1,90 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "src/runtime/kernel/arm/base/stack_base.h"
|
||||
#include <vector>
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "nnacl/base/stack_base.h"
|
||||
#include "nnacl/stack_parameter.h"
|
||||
#include "include/errorcode.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_Stack;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
static int GetCopyNum(const std::vector<int> &in_shape, int axis, int n_dim) {
|
||||
int copy_num = 1;
|
||||
if (axis > 0) {
|
||||
for (int j = n_dim - 1; j > axis - 1; j--) {
|
||||
copy_num *= in_shape[j];
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < n_dim; ++i) {
|
||||
copy_num *= in_shape[i];
|
||||
}
|
||||
}
|
||||
return copy_num;
|
||||
}
|
||||
|
||||
static size_t GetOutterSize(const std::vector<int> &in_shape, int axis) {
|
||||
size_t outter_size = 1;
|
||||
for (int i = 0; i < axis; ++i) {
|
||||
outter_size *= in_shape[i];
|
||||
}
|
||||
return outter_size;
|
||||
}
|
||||
|
||||
int StackBaseCPUKernel::ReSize() {
|
||||
auto param = reinterpret_cast<StackParameter *>(op_parameter_);
|
||||
auto input0_shape = in_tensors_.front()->shape();
|
||||
axis_ = param->axis_ < 0 ? param->axis_ + input0_shape.size() + 1 : param->axis_;
|
||||
auto input_nums = in_tensors_.size();
|
||||
if (input_nums == 1) {
|
||||
copy_size_ = in_tensors_.front()->Size();
|
||||
} else {
|
||||
MS_ASSERT(input_nums > 1);
|
||||
copy_size_ = GetCopyNum(input0_shape, axis_, input0_shape.size()) * data_type_size_;
|
||||
outter_size_ = GetOutterSize(input0_shape, axis_);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int StackBaseCPUKernel::Init() {
|
||||
auto input0_tensor = in_tensors_.front();
|
||||
data_type_size_ = input0_tensor->Size() / input0_tensor->ElementsNum();
|
||||
if (!InferShapeDone()) {
|
||||
return RET_OK;
|
||||
}
|
||||
return ReSize();
|
||||
}
|
||||
|
||||
int StackBaseCPUKernel::Run() {
|
||||
size_t inputs_num = in_tensors_.size();
|
||||
char **all_inputs = static_cast<char **>(context_->allocator->Malloc(inputs_num * sizeof(char *)));
|
||||
for (size_t j = 0; j < inputs_num; ++j) {
|
||||
all_inputs[j] = reinterpret_cast<char *>(in_tensors_.at(j)->data_c());
|
||||
}
|
||||
auto output_data = reinterpret_cast<char *>(out_tensors_.at(0)->data_c());
|
||||
Stack(all_inputs, output_data, in_tensors_.size(), copy_size_, outter_size_);
|
||||
context_->allocator->Free(all_inputs);
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Stack, LiteKernelCreator<StackBaseCPUKernel>)
|
||||
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Stack, LiteKernelCreator<StackBaseCPUKernel>)
|
||||
} // namespace mindspore::kernel
|
|
@ -13,21 +13,22 @@
|
|||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_STACK_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_STACK_H_
|
||||
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_STACK_BASE_H_
|
||||
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_STACK_BASE_H_
|
||||
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "nnacl/stack_parameter.h"
|
||||
|
||||
using mindspore::lite::InnerContext;
|
||||
namespace mindspore::kernel {
|
||||
class StackCPUKernel : public LiteKernel {
|
||||
class StackBaseCPUKernel : public LiteKernel {
|
||||
public:
|
||||
StackCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||
const mindspore::lite::PrimitiveC *primitive)
|
||||
StackBaseCPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, const InnerContext *ctx,
|
||||
const mindspore::lite::PrimitiveC *primitive)
|
||||
: LiteKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||
|
||||
~StackCPUKernel() = default;
|
||||
~StackBaseCPUKernel() override = default;
|
||||
|
||||
int Init() override;
|
||||
int ReSize() override;
|
||||
|
@ -35,7 +36,9 @@ class StackCPUKernel : public LiteKernel {
|
|||
|
||||
protected:
|
||||
int axis_ = 0;
|
||||
size_t data_type_size_ = 0;
|
||||
size_t copy_size_ = 0;
|
||||
size_t outter_size_ = 1;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_FP32_STACK_H_
|
||||
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_BASE_STACK_BASE_H_
|
|
@ -21,7 +21,7 @@
|
|||
#include "include/errorcode.h"
|
||||
#include "src/runtime/kernel/arm/fp16/common_fp16.h"
|
||||
#include "nnacl/fp16/cast_fp16.h"
|
||||
#include "nnacl/fp16/stack_fp16.h"
|
||||
#include "nnacl/base/stack_base.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
|
@ -29,25 +29,18 @@ using mindspore::lite::RET_OK;
|
|||
using mindspore::schema::PrimitiveType_Stack;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
int StackFp16CPUKernel::Init() {
|
||||
if (!InferShapeDone()) {
|
||||
return RET_OK;
|
||||
}
|
||||
return ReSize();
|
||||
}
|
||||
|
||||
void StackFp16CPUKernel::InitMallocFlags() {
|
||||
malloc_buffers_.resize(in_tensors_.size());
|
||||
for (size_t i = 0; i < in_tensors_.size(); ++i) {
|
||||
malloc_buffers_.at(i) = in_tensors_.at(i)->data_type() == kNumberTypeFloat32;
|
||||
}
|
||||
malloc_out = out_tensors_.at(0)->data_type() == kNumberTypeFloat32;
|
||||
malloc_out_ = out_tensors_.at(0)->data_type() == kNumberTypeFloat32;
|
||||
}
|
||||
|
||||
int StackFp16CPUKernel::MallocAssignBuffer() {
|
||||
buffers_.resize(in_tensors_.size(), nullptr);
|
||||
for (size_t i = 0; i < in_tensors_.size(); ++i) {
|
||||
buffers_.at(i) = ConvertInputFp32toFp16(in_tensors_.at(i), context_);
|
||||
buffers_.at(i) = reinterpret_cast<char *>(ConvertInputFp32toFp16(in_tensors_.at(i), context_));
|
||||
if (buffers_.at(i) == nullptr) {
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
@ -68,33 +61,33 @@ void StackFp16CPUKernel::FreeBuffer() {
|
|||
buffers_.at(i) = nullptr;
|
||||
}
|
||||
}
|
||||
if (malloc_out && out_buffer_ != nullptr) {
|
||||
if (malloc_out_ && out_buffer_ != nullptr) {
|
||||
context_->allocator->Free(out_buffer_);
|
||||
out_buffer_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
int StackFp16CPUKernel::Run() {
|
||||
size_t inputs_num = in_tensors_.size();
|
||||
auto input0 = in_tensors_.at(0);
|
||||
if (inputs_num == 1) {
|
||||
memcpy(out_tensors_.at(0)->MutableData(), input0->MutableData(), input0->Size());
|
||||
int StackFp16CPUKernel::Init() {
|
||||
data_type_size_ = sizeof(float16_t);
|
||||
if (!InferShapeDone()) {
|
||||
return RET_OK;
|
||||
}
|
||||
return ReSize();
|
||||
}
|
||||
|
||||
int StackFp16CPUKernel::Run() {
|
||||
InitMallocFlags();
|
||||
auto ret = MallocAssignBuffer();
|
||||
if (ret != RET_OK) {
|
||||
FreeBuffer();
|
||||
return ret;
|
||||
}
|
||||
auto input0_shape = input0->shape();
|
||||
DoStackFp16(buffers_.data(), inputs_num, input0_shape.data(), input0_shape.size(), axis_, out_buffer_);
|
||||
Stack(buffers_.data(), reinterpret_cast<char *>(out_buffer_), in_tensors_.size(), copy_size_, outter_size_);
|
||||
// if output tensor is fp32, we need to transform
|
||||
if (malloc_out) {
|
||||
if (malloc_out_) {
|
||||
auto out_tensor = out_tensors_.at(0);
|
||||
Float16ToFloat32(out_buffer_, reinterpret_cast<float *>(out_tensor->MutableData()), out_tensor->ElementsNum());
|
||||
}
|
||||
|
||||
FreeBuffer();
|
||||
return RET_OK;
|
||||
}
|
||||
|
|
|
@ -18,16 +18,16 @@
|
|||
|
||||
#include <vector>
|
||||
#include "src/lite_kernel.h"
|
||||
#include "src/runtime/kernel/arm/fp32/stack_fp32.h"
|
||||
#include "src/runtime/kernel/arm/base/stack_base.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
class StackFp16CPUKernel : public StackCPUKernel {
|
||||
class StackFp16CPUKernel : public StackBaseCPUKernel {
|
||||
public:
|
||||
StackFp16CPUKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||
const std::vector<lite::Tensor *> &outputs, const lite::InnerContext *ctx,
|
||||
const mindspore::lite::PrimitiveC *primitive)
|
||||
: StackCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||
~StackFp16CPUKernel() = default;
|
||||
: StackBaseCPUKernel(parameter, inputs, outputs, ctx, primitive) {}
|
||||
~StackFp16CPUKernel() override = default;
|
||||
int Init() override;
|
||||
int Run() override;
|
||||
|
||||
|
@ -38,9 +38,9 @@ class StackFp16CPUKernel : public StackCPUKernel {
|
|||
|
||||
private:
|
||||
std::vector<bool> malloc_buffers_;
|
||||
std::vector<float16_t *> buffers_;
|
||||
std::vector<char *> buffers_;
|
||||
float16_t *out_buffer_;
|
||||
bool malloc_out;
|
||||
bool malloc_out_;
|
||||
};
|
||||
} // namespace mindspore::kernel
|
||||
|
||||
|
|
|
@ -114,7 +114,7 @@ int ConvolutionDelegateCPUKernel::Init() {
|
|||
}
|
||||
|
||||
int ConvolutionDelegateCPUKernel::ReSize() {
|
||||
// Updata shape info of input and output
|
||||
// Update shape info of input and output
|
||||
SetInputOutputShapeInfo(reinterpret_cast<ConvParameter *>(op_parameter_), in_tensors_.front(), out_tensors_.front(),
|
||||
context_);
|
||||
if (conv_kernel_ == nullptr) {
|
||||
|
|
|
@ -1,81 +0,0 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "src/runtime/kernel/arm/fp32/stack_fp32.h"
|
||||
#include <vector>
|
||||
#include "schema/model_generated.h"
|
||||
#include "src/kernel_registry.h"
|
||||
#include "nnacl/fp32/stack_fp32.h"
|
||||
#include "nnacl/stack_parameter.h"
|
||||
#include "include/errorcode.h"
|
||||
|
||||
using mindspore::lite::KernelRegistrar;
|
||||
using mindspore::lite::RET_ERROR;
|
||||
using mindspore::lite::RET_OK;
|
||||
using mindspore::schema::PrimitiveType_Stack;
|
||||
|
||||
namespace mindspore::kernel {
|
||||
int StackCPUKernel::ReSize() {
|
||||
StackParameter *param = reinterpret_cast<StackParameter *>(op_parameter_);
|
||||
auto input0_shape = in_tensors_.at(0)->shape();
|
||||
axis_ = param->axis_ < 0 ? param->axis_ + input0_shape.size() + 1 : param->axis_;
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
int StackCPUKernel::Init() {
|
||||
if (!InferShapeDone()) {
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
return ReSize();
|
||||
}
|
||||
|
||||
int StackCPUKernel::Run() {
|
||||
size_t inputs_num = in_tensors_.size();
|
||||
auto input0 = in_tensors_.at(0);
|
||||
if (inputs_num == 1) {
|
||||
auto *output_data = reinterpret_cast<int8_t *>(out_tensors_.at(0)->MutableData());
|
||||
MS_ASSERT(output_data);
|
||||
auto *input_data = reinterpret_cast<const int8_t *>(input0->MutableData());
|
||||
MS_ASSERT(input_data);
|
||||
DoStackOneInput(input_data, output_data, input0->Size());
|
||||
return RET_OK;
|
||||
}
|
||||
auto input0_shape = in_tensors_.at(0)->shape();
|
||||
if (in_tensors_.at(0)->data_type() == kNumberTypeFloat32 || in_tensors_.at(0)->data_type() == kNumberTypeFloat) {
|
||||
auto *output_data = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData());
|
||||
MS_ASSERT(output_data);
|
||||
float *inputs[inputs_num];
|
||||
for (size_t i = 0; i < inputs_num; ++i) {
|
||||
inputs[i] = reinterpret_cast<float *>(in_tensors_.at(i)->MutableData());
|
||||
MS_ASSERT(inputs[i]);
|
||||
}
|
||||
DoStack(inputs, inputs_num, input0_shape.data(), input0_shape.size(), axis_, output_data);
|
||||
} else {
|
||||
auto *output_data = reinterpret_cast<int32_t *>(out_tensors_.at(0)->MutableData());
|
||||
MS_ASSERT(output_data);
|
||||
int32_t *inputs[inputs_num];
|
||||
for (size_t i = 0; i < inputs_num; ++i) {
|
||||
inputs[i] = reinterpret_cast<int32_t *>(in_tensors_.at(i)->MutableData());
|
||||
MS_ASSERT(inputs[i]);
|
||||
}
|
||||
DoStackInt32(inputs, inputs_num, input0_shape.data(), input0_shape.size(), axis_, output_data);
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
REG_KERNEL(kCPU, kNumberTypeFloat32, PrimitiveType_Stack, LiteKernelCreator<StackCPUKernel>)
|
||||
REG_KERNEL(kCPU, kNumberTypeInt32, PrimitiveType_Stack, LiteKernelCreator<StackCPUKernel>)
|
||||
} // namespace mindspore::kernel
|
|
@ -14,7 +14,7 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
#include "common/common_test.h"
|
||||
#include "mindspore/lite/nnacl/fp32/stack_fp32.h"
|
||||
#include "mindspore/lite/nnacl/base/stack_base.h"
|
||||
|
||||
namespace mindspore {
|
||||
class StackTestFp32 : public mindspore::CommonTest {
|
||||
|
@ -26,16 +26,15 @@ TEST_F(StackTestFp32, StackTest1) {
|
|||
float input0[6] = {1, 2, 3, 10, 20, 30};
|
||||
float input1[6] = {4, 5, 6, 40, 50, 60};
|
||||
float input2[6] = {7, 8, 9, 70, 80, 90};
|
||||
float *input[3];
|
||||
input[0] = input0;
|
||||
input[1] = input1;
|
||||
input[2] = input2;
|
||||
char *input[3];
|
||||
input[0] = reinterpret_cast<char *>(input0);
|
||||
input[1] = reinterpret_cast<char *>(input1);
|
||||
input[2] = reinterpret_cast<char *>(input2);
|
||||
std::vector<int> shape = {2, 3};
|
||||
int axis = 2;
|
||||
constexpr int kOutSize = 18;
|
||||
float expect_out[kOutSize] = {1, 4, 7, 2, 5, 8, 3, 6, 9, 10, 40, 70, 20, 50, 80, 30, 60, 90};
|
||||
float output[kOutSize];
|
||||
DoStack(input, 3, shape.data(), shape.size(), axis, output);
|
||||
Stack(input, reinterpret_cast<char *>(output), 3, 4, 6);
|
||||
for (float i : output) {
|
||||
std::cout << i << " ";
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue