change the int32 restrict to int

This commit is contained in:
Payne 2020-12-21 02:31:06 +08:00
parent 491362258b
commit 236bfb75e3
2 changed files with 41 additions and 2 deletions

View File

@ -348,7 +348,7 @@ def get_index_tensor_dtype(dtype):
def check_index_tensors_dtype(dtypes, op_name):
"""Check a tuple of tensor data type."""
for ele in dtypes:
if not ele == mstype.int32:
if not ele in mstype.int_type:
raise IndexError(f"For '{op_name}', the all index tensor "
f"data types should be mstype.int32, but got {dtypes}.")
return True
@ -357,7 +357,7 @@ def check_index_tensors_dtype(dtypes, op_name):
@constexpr
def check_index_tensor_dtype(dtype, op_name):
"""Check a tensor data type."""
if dtype == mstype.int32:
if dtype in mstype.int_type:
return True
raise IndexError(
f"For '{op_name}', the index tensor data type should be mstype.int32, but got {dtype}.")

View File

@ -0,0 +1,39 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test_int64_support """
import numpy as np
import mindspore.nn as nn
from mindspore import context
from mindspore.common.tensor import Tensor
import mindspore as ms
def test_parser_support_int64_normal_graph():
""" test tensor index support int64 -index, graph mode"""
class Net(nn.Cell):
def __init__(self):
super().__init__()
def construct(self, inputs, tensor_in):
result = inputs[tensor_in]
return result
context.set_context(mode=context.GRAPH_MODE)
input_np_x = np.random.randn(2, 3, 4, 5).astype(np.float32)
input_me_x = Tensor(input_np_x, ms.float32)
input_np_y = np.random.randint(2, size=[1, 2]).astype(np.int64)
tensor = Tensor(input_np_y, ms.int64)
net = Net()
net(input_me_x, tensor).asnumpy()