replace DepthWiseConv with nn.Conv2D

This commit is contained in:
yuchaojie 2021-01-27 15:29:57 +08:00
parent a50a65adf9
commit 212d7ebd0b
12 changed files with 50 additions and 229 deletions

View File

@ -20,22 +20,22 @@ Previously the kernel size and pad mode attrs of pooling ops are named "ksize" a
<td> <td>
```python ```python
>>> from mindspore.ops import operations as P >>> import mindspore.ops as ops
>>> >>>
>>> avg_pool = P.AvgPool(ksize=2, padding='same') >>> avg_pool = ops.AvgPool(ksize=2, padding='same')
>>> max_pool = P.MaxPool(ksize=2, padding='same') >>> max_pool = ops.MaxPool(ksize=2, padding='same')
>>> max_pool_with_argmax = P.MaxPoolWithArgmax(ksize=2, padding='same') >>> max_pool_with_argmax = ops.MaxPoolWithArgmax(ksize=2, padding='same')
``` ```
</td> </td>
<td> <td>
```python ```python
>>> from mindspore.ops import operations as P >>> import mindspore.ops as ops
>>> >>>
>>> avg_pool = P.AvgPool(kernel_size=2, pad_mode='same') >>> avg_pool = ops.AvgPool(kernel_size=2, pad_mode='same')
>>> max_pool = P.MaxPool(kernel_size=2, pad_mode='same') >>> max_pool = ops.MaxPool(kernel_size=2, pad_mode='same')
>>> max_pool_with_argmax = P.MaxPoolWithArgmax(kernel_size=2, pad_mode='same') >>> max_pool_with_argmax = ops.MaxPoolWithArgmax(kernel_size=2, pad_mode='same')
``` ```
</td> </td>

View File

@ -18,6 +18,7 @@
import math import math
import operator import operator
from functools import reduce, partial from functools import reduce, partial
from mindspore import log as logger
from mindspore._checkparam import _check_3d_int_or_tuple from mindspore._checkparam import _check_3d_int_or_tuple
import numpy as np import numpy as np
from ... import context from ... import context
@ -1476,6 +1477,8 @@ class DepthwiseConv2dNative(PrimitiveWithInfer):
dilation=1, dilation=1,
group=1): group=1):
"""Initialize DepthwiseConv2dNative""" """Initialize DepthwiseConv2dNative"""
logger.warning("WARN_DEPRECATED: The usage of DepthwiseConv2dNative is deprecated."
" Please use nn.Conv2D.")
self.init_prim_io_names(inputs=['x', 'w'], outputs=['output']) self.init_prim_io_names(inputs=['x', 'w'], outputs=['output'])
self.kernel_size = _check_positive_int_or_tuple('kernel_size', kernel_size, self.name) self.kernel_size = _check_positive_int_or_tuple('kernel_size', kernel_size, self.name)
self.stride = _check_positive_int_or_tuple('stride', stride, self.name) self.stride = _check_positive_int_or_tuple('stride', stride, self.name)

View File

@ -102,7 +102,7 @@ step1: prepare pretrained model: train a mobilenet_v2 model by mindspore or use
# The key/cell/module name must as follow, otherwise you need to modify "name_map" function: # The key/cell/module name must as follow, otherwise you need to modify "name_map" function:
# --mindspore: as the same as mobilenet_v2_key.ckpt # --mindspore: as the same as mobilenet_v2_key.ckpt
# --pytorch: same as official pytorch model(e.g., official mobilenet_v2-b0353104.pth) # --pytorch: same as official pytorch model(e.g., official mobilenet_v2-b0353104.pth)
python torch_to_ms_mobilenetv2.py --ckpt_fn=./mobilenet_v2_key.ckpt --pt_fn=./mobilenet_v2-b0353104.pth --out_ckpt_fn=./mobilenet_v2.ckpt python convert_weight_mobilenetv2.py --ckpt_fn=./mobilenet_v2_key.ckpt --pt_fn=./mobilenet_v2-b0353104.pth --out_ckpt_fn=./mobilenet_v2.ckpt
``` ```
step2: prepare user rank_table step2: prepare user rank_table
@ -120,7 +120,7 @@ step3: train
cd scripts; cd scripts;
# prepare data_path, use symbolic link # prepare data_path, use symbolic link
ln -sf [USE_DATA_DIR] dataset ln -sf [USE_DATA_DIR] dataset
# check you dir to make sure your datas are in the right path # check you dir to make sure your data are in the right path
ls ./dataset/centerface # data path ls ./dataset/centerface # data path
ls ./dataset/centerface/annotations/train.json # annot_path ls ./dataset/centerface/annotations/train.json # annot_path
ls ./dataset/centerface/images/train/images # img_dir ls ./dataset/centerface/images/train/images # img_dir
@ -147,7 +147,7 @@ python setup.py install; # used for eval
cd -; #cd ../../scripts; cd -; #cd ../../scripts;
mkdir ./output mkdir ./output
mkdir ./output/centerface mkdir ./output/centerface
# check you dir to make sure your datas are in the right path # check you dir to make sure your data are in the right path
ls ./dataset/images/val/images/ # data path ls ./dataset/images/val/images/ # data path
ls ./dataset/centerface/ground_truth/val.mat # annot_path ls ./dataset/centerface/ground_truth/val.mat # annot_path
``` ```
@ -195,7 +195,7 @@ sh eval_all.sh
│ ├──lr_scheduler.py // learning rate scheduler │ ├──lr_scheduler.py // learning rate scheduler
│ ├──mobile_v2.py // modified mobilenet_v2 backbone │ ├──mobile_v2.py // modified mobilenet_v2 backbone
│ ├──utils.py // auxiliary functions for train, to log and preload │ ├──utils.py // auxiliary functions for train, to log and preload
│ ├──var_init.py // weight initilization │ ├──var_init.py // weight initialization
│ ├──convert_weight_mobilenetv2.py // convert pretrained backbone to mindspore │ ├──convert_weight_mobilenetv2.py // convert pretrained backbone to mindspore
│ ├──convert_weight.py // CenterFace model convert to mindspore │ ├──convert_weight.py // CenterFace model convert to mindspore
└── dependency // third party codes: MIT License └── dependency // third party codes: MIT License
@ -414,7 +414,7 @@ After testing, you can find many txt file save the box information and scores,
open it you can see: open it you can see:
```python ```python
646.3 189.1 42.1 51.8 0.747 # left top hight weight score 646.3 189.1 42.1 51.8 0.747 # left top height weight score
157.4 408.6 43.1 54.1 0.667 157.4 408.6 43.1 54.1 0.667
120.3 212.4 38.7 42.8 0.650 120.3 212.4 38.7 42.8 0.650
... ...
@ -553,7 +553,7 @@ CenterFace on 3.2K images(The annotation and data format must be the same as wid
# [Description of Random Situation](#contents) # [Description of Random Situation](#contents)
In dataset.py, we set the seed inside ```create_dataset``` function. In dataset.py, we set the seed inside ```create_dataset``` function.
In var_init.py, we set seed for weight initilization In var_init.py, we set seed for weight initialization
# [ModelZoo Homepage](#contents) # [ModelZoo Homepage](#contents)

View File

@ -133,11 +133,6 @@ def pt_to_ckpt(pt, ckpt, out_path):
parameter = state_dict_torch[key] parameter = state_dict_torch[key]
parameter = parameter.numpy() parameter = parameter.numpy()
# depwise conv pytorch[cout, 1, k , k] -> ms[1, cin, k , k], cin = cout
if state_dict_ms[name_relate[key]].data.shape != parameter.shape:
parameter = parameter.transpose(1, 0, 2, 3)
print('ms=', state_dict_ms[name_relate[key]].data.shape, 'pytorch=', parameter.shape, 'name=', key)
param_dict['name'] = name_relate[key] param_dict['name'] = name_relate[key]
param_dict['data'] = Tensor(parameter) param_dict['data'] = Tensor(parameter)
new_params_list.append(param_dict) new_params_list.append(param_dict)
@ -158,13 +153,6 @@ def ckpt_to_pt(pt, ckpt, out_path):
name = name_relate[key] name = name_relate[key]
parameter = state_dict_ms[name].data parameter = state_dict_ms[name].data
parameter = parameter.asnumpy() parameter = parameter.asnumpy()
if state_dict_ms[name_relate[key]].data.shape != state_dict_torch[key].numpy().shape:
print('before ms=', state_dict_ms[name_relate[key]].data.shape, 'pytorch=',
state_dict_torch[key].numpy().shape, 'name=', key)
parameter = parameter.transpose(1, 0, 2, 3)
print('after ms=', state_dict_ms[name_relate[key]].data.shape, 'pytorch=',
state_dict_torch[key].numpy().shape, 'name=', key)
state_dict[key] = torch.from_numpy(parameter) state_dict[key] = torch.from_numpy(parameter)
save_model(out_path, epoch=0, model=None, optimizer=None, state_dict=state_dict) save_model(out_path, epoch=0, model=None, optimizer=None, state_dict=state_dict)

View File

@ -120,12 +120,6 @@ def pt_to_ckpt(pt, ckpt, out_ckpt):
parameter = state_dict_torch[key] parameter = state_dict_torch[key]
parameter = parameter.numpy() parameter = parameter.numpy()
# depwise conv pytorch[cout, 1, k , k] -> ms[1, cin, k , k], cin = cout
if state_dict_ms[name_relate[key]].data.shape != parameter.shape:
parameter = parameter.transpose(1, 0, 2, 3)
print('ms=', state_dict_ms[name_relate[key]].data.shape, 'pytorch=', parameter.shape, 'name=', key)
param_dict['name'] = name_relate[key] param_dict['name'] = name_relate[key]
param_dict['data'] = Tensor(parameter) param_dict['data'] = Tensor(parameter)
new_params_list.append(param_dict) new_params_list.append(param_dict)

View File

@ -17,12 +17,10 @@
import mindspore.nn as nn import mindspore.nn as nn
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops.operations import TensorAdd from mindspore.ops.operations import TensorAdd
from mindspore import Parameter
from mindspore.common.initializer import initializer
from src.var_init import KaimingNormal from src.var_init import KaimingNormal
__all__ = ['MobileNetV2', 'mobilenet_v2', 'DepthWiseConv'] __all__ = ['MobileNetV2', 'mobilenet_v2']
def _make_divisible(v, divisor, min_value=None): def _make_divisible(v, divisor, min_value=None):
""" """
@ -43,32 +41,6 @@ def _make_divisible(v, divisor, min_value=None):
new_v += divisor new_v += divisor
return new_v return new_v
class DepthWiseConv(nn.Cell):
"""
Depthwise convolution
"""
def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False):
super(DepthWiseConv, self).__init__()
self.has_bias = has_bias
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=channel_multiplier, kernel_size=kernel_size,
stride=stride, pad_mode=pad_mode, pad=pad)
self.bias_add = P.BiasAdd()
weight_shape = [channel_multiplier, in_planes, kernel_size, kernel_size]
self.weight = Parameter(initializer(KaimingNormal(mode='fan_out'), weight_shape))
if has_bias:
bias_shape = [channel_multiplier * in_planes]
self.bias = Parameter(initializer('zeros', bias_shape))
else:
self.bias = None
def construct(self, x):
output = self.depthwise_conv(x, self.weight)
if self.has_bias:
output = self.bias_add(output, self.bias)
return output
class ConvBNReLU(nn.Cell): class ConvBNReLU(nn.Cell):
""" """
@ -81,7 +53,8 @@ class ConvBNReLU(nn.Cell):
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode="pad", padding=padding, conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode="pad", padding=padding,
has_bias=False) has_bias=False)
else: else:
conv = DepthWiseConv(in_planes, kernel_size, stride, pad_mode="pad", pad=padding) conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode="pad", padding=padding,
has_bias=False, group=groups, weight_init=KaimingNormal(mode='fan_out'))
layers = [conv, nn.BatchNorm2d(out_planes).add_flags_recursive(fp32=True), nn.ReLU6()] #, momentum=0.9 layers = [conv, nn.BatchNorm2d(out_planes).add_flags_recursive(fp32=True), nn.ReLU6()] #, momentum=0.9
self.features = nn.SequentialCell(layers) self.features = nn.SequentialCell(layers)

View File

@ -24,8 +24,6 @@ import numpy as np
from mindspore.train.serialization import load_checkpoint from mindspore.train.serialization import load_checkpoint
import mindspore.nn as nn import mindspore.nn as nn
from src.mobile_v2 import DepthWiseConv
def load_backbone(net, ckpt_path, args): def load_backbone(net, ckpt_path, args):
""" """
Load backbone Load backbone
@ -52,7 +50,7 @@ def load_backbone(net, ckpt_path, args):
for name, cell in net.cells_and_names(): for name, cell in net.cells_and_names():
if name.startswith(centerface_backbone_prefix): if name.startswith(centerface_backbone_prefix):
name = name.replace(centerface_backbone_prefix, mobilev2_backbone_prefix) name = name.replace(centerface_backbone_prefix, mobilev2_backbone_prefix)
if isinstance(cell, (nn.Conv2d, nn.Dense, DepthWiseConv)): if isinstance(cell, (nn.Conv2d, nn.Dense)):
name, replace_name, replace_idx = replace_names(name, replace_name, replace_idx) name, replace_name, replace_idx = replace_names(name, replace_name, replace_idx)
mobilev2_weight = '{}.weight'.format(name) mobilev2_weight = '{}.weight'.format(name)
mobilev2_bias = '{}.bias'.format(name) mobilev2_bias = '{}.bias'.format(name)

View File

@ -33,6 +33,7 @@ from mindspore.train.callback import ModelCheckpoint, RunContext
from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig from mindspore.train.callback import _InternalCallbackParam, CheckpointConfig
from mindspore.train.serialization import load_checkpoint, load_param_into_net from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.profiler.profiling import Profiler from mindspore.profiler.profiling import Profiler
from mindspore.common import set_seed
from src.utils import get_logger from src.utils import get_logger
from src.utils import AverageMeter from src.utils import AverageMeter
@ -47,6 +48,7 @@ from src.config import ConfigCenterface
from src.centerface import CenterFaceWithLossCell, TrainingWrapper from src.centerface import CenterFaceWithLossCell, TrainingWrapper
from src.dataset import GetDataLoader from src.dataset import GetDataLoader
set_seed(1)
dev_id = int(os.getenv('DEVICE_ID')) dev_id = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=False, context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=False,
device_target="Ascend", save_graphs=False, device_id=dev_id, reserve_class_name_in_scope=False) device_target="Ascend", save_graphs=False, device_id=dev_id, reserve_class_name_in_scope=False)
@ -130,7 +132,7 @@ if __name__ == "__main__":
args.rank = get_rank() args.rank = get_rank()
args.group_size = get_group_size() args.group_size = get_group_size()
# select for master rank save ckpt or all rank save, compatiable for model parallel # select for master rank save ckpt or all rank save, compatible for model parallel
args.rank_save_ckpt_flag = 0 args.rank_save_ckpt_flag = 0
if args.is_save_on_master: if args.is_save_on_master:
if args.rank == 0: if args.rank == 0:

View File

@ -20,10 +20,8 @@ from copy import deepcopy
import mindspore as ms import mindspore as ms
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import context, ms_function from mindspore import ms_function
from mindspore.common.initializer import (Normal, One, Uniform, Zero, from mindspore.common.initializer import (Normal, One, Uniform, Zero)
initializer)
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops.composite import clip_by_value from mindspore.ops.composite import clip_by_value
@ -224,13 +222,7 @@ def _decode_block_str(block_str, depth_multiplier=1.0):
# activation fn # activation fn
key = op[0] key = op[0]
v = op[1:] v = op[1:]
if v == 're': if v in ('re', 'r6', 'hs', 'sw'):
print('not support')
elif v == 'r6':
print('not support')
elif v == 'hs':
print('not support')
elif v == 'sw':
print('not support') print('not support')
else: else:
continue continue
@ -459,28 +451,6 @@ class BlockBuilder(nn.Cell):
return self.layer(x) return self.layer(x)
class DepthWiseConv(nn.Cell):
def __init__(self, in_planes, kernel_size, stride):
super(DepthWiseConv, self).__init__()
platform = context.get_context("device_target")
weight_shape = [1, kernel_size, in_planes]
weight_init = _initialize_weight_goog(shape=weight_shape)
if platform == "GPU":
self.depthwise_conv = P.Conv2D(out_channel=in_planes * 1, kernel_size=kernel_size,
stride=stride, pad_mode="same", group=in_planes)
self.weight = Parameter(initializer(
weight_init, [in_planes * 1, 1, kernel_size, kernel_size]))
else:
self.depthwise_conv = P.DepthwiseConv2dNative(
channel_multiplier=1, kernel_size=kernel_size, stride=stride, pad_mode='same',)
self.weight = Parameter(initializer(
weight_init, [1, in_planes, kernel_size, kernel_size]))
def construct(self, x):
x = self.depthwise_conv(x, self.weight)
return x
class DropConnect(nn.Cell): class DropConnect(nn.Cell):
def __init__(self, drop_connect_rate=0., seed0=0, seed1=0): def __init__(self, drop_connect_rate=0., seed0=0, seed1=0):
super(DropConnect, self).__init__() super(DropConnect, self).__init__()
@ -540,7 +510,9 @@ class DepthwiseSeparableConv(nn.Cell):
self.has_pw_act = pw_act self.has_pw_act = pw_act
self.act_fn = act_fn self.act_fn = act_fn
self.drop_connect_rate = drop_connect_rate self.drop_connect_rate = drop_connect_rate
self.conv_dw = DepthWiseConv(in_chs, dw_kernel_size, stride) self.conv_dw = nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride, pad_mode="same",
has_bias=False, group=in_chs,
weight_init=_initialize_weight_goog(shape=[1, dw_kernel_size, in_chs]))
self.bn1 = _fused_bn(in_chs, **bn_args) self.bn1 = _fused_bn(in_chs, **bn_args)
# #
@ -595,7 +567,9 @@ class InvertedResidual(nn.Cell):
if self.shuffle_type is not None and isinstance(exp_kernel_size, list): if self.shuffle_type is not None and isinstance(exp_kernel_size, list):
self.shuffle = None self.shuffle = None
self.conv_dw = DepthWiseConv(mid_chs, dw_kernel_size, stride) self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride, pad_mode="same",
has_bias=False, group=mid_chs,
weight_init=_initialize_weight_goog(shape=[1, dw_kernel_size, mid_chs]))
self.bn2 = _fused_bn(mid_chs, **bn_args) self.bn2 = _fused_bn(mid_chs, **bn_args)
if self.has_se: if self.has_se:

View File

@ -20,13 +20,12 @@ import numpy as np
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
import mindspore as ms import mindspore as ms
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Parameter, context, Tensor from mindspore import context, Tensor
from mindspore.parallel._auto_parallel_context import auto_parallel_context from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.communication.management import get_group_size from mindspore.communication.management import get_group_size
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops import functional as F from mindspore.ops import functional as F
from mindspore.ops import composite as C from mindspore.ops import composite as C
from mindspore.common.initializer import initializer
def _make_divisible(x, divisor=4): def _make_divisible(x, divisor=4):
@ -44,8 +43,8 @@ def _bn(channel):
def _last_conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod='same', pad=0): def _last_conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod='same', pad=0):
depthwise_conv = DepthwiseConv( depthwise_conv = nn.Conv2d(in_channel, in_channel, kernel_size, stride, pad_mode='same', padding=pad,
in_channel, kernel_size, stride, pad_mode='same', pad=pad) has_bias=False, group=in_channel, weight_init='ones')
conv = _conv2d(in_channel, out_channel, kernel_size=1) conv = _conv2d(in_channel, out_channel, kernel_size=1)
return nn.SequentialCell([depthwise_conv, _bn(in_channel), nn.ReLU6(), conv]) return nn.SequentialCell([depthwise_conv, _bn(in_channel), nn.ReLU6(), conv])
@ -75,8 +74,8 @@ class ConvBNReLU(nn.Cell):
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='same', conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='same',
padding=padding) padding=padding)
else: else:
conv = DepthwiseConv(in_planes, kernel_size, conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='same', padding=padding,
stride, pad_mode='same', pad=padding) has_bias=False, group=groups, weight_init='ones')
layers = [conv, _bn(out_planes)] layers = [conv, _bn(out_planes)]
if use_act: if use_act:
layers.append(Activation(act_type)) layers.append(Activation(act_type))
@ -87,52 +86,6 @@ class ConvBNReLU(nn.Cell):
return output return output
class DepthwiseConv(nn.Cell):
"""
Depthwise Convolution warpper definition.
Args:
in_planes (int): Input channel.
kernel_size (int): Input kernel size.
stride (int): Stride size.
pad_mode (str): pad mode in (pad, same, valid)
channel_multiplier (int): Output channel multiplier
has_bias (bool): has bias or not
Returns:
Tensor, output tensor.
Examples:
>>> DepthwiseConv(16, 3, 1, 'pad', 1, channel_multiplier=1)
"""
def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False):
super(DepthwiseConv, self).__init__()
self.has_bias = has_bias
self.in_channels = in_planes
self.channel_multiplier = channel_multiplier
self.out_channels = in_planes * channel_multiplier
self.kernel_size = (kernel_size, kernel_size)
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=channel_multiplier,
kernel_size=self.kernel_size,
stride=stride, pad_mode=pad_mode, pad=pad)
self.bias_add = P.BiasAdd()
weight_shape = [channel_multiplier, in_planes, *self.kernel_size]
self.weight = Parameter(initializer('ones', weight_shape), name="weight")
if has_bias:
bias_shape = [channel_multiplier * in_planes]
self.bias = Parameter(initializer('zeros', bias_shape), name="bias")
else:
self.bias = None
def construct(self, x):
output = self.depthwise_conv(x, self.weight)
if self.has_bias:
output = self.bias_add(output, self.bias)
return output
class MyHSigmoid(nn.Cell): class MyHSigmoid(nn.Cell):
def __init__(self): def __init__(self):
super(MyHSigmoid, self).__init__() super(MyHSigmoid, self).__init__()

View File

@ -20,9 +20,8 @@ from copy import deepcopy
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.common.initializer import Normal, Zero, One, initializer, Uniform from mindspore.common.initializer import Normal, Zero, One, Uniform
from mindspore import context, ms_function from mindspore import ms_function
from mindspore.common.parameter import Parameter
from mindspore import Tensor from mindspore import Tensor
# Imagenet constant values # Imagenet constant values
@ -244,13 +243,7 @@ def _decode_block_str(block_str, depth_multiplier=1.0):
# activation fn # activation fn
key = op[0] key = op[0]
v = op[1:] v = op[1:]
if v == 're': if v in ('re', 'r6', 'hs', 'sw'):
print('not support')
elif v == 'r6':
print('not support')
elif v == 'hs':
print('not support')
elif v == 'sw':
print('not support') print('not support')
else: else:
continue continue
@ -485,40 +478,6 @@ class BlockBuilder(nn.Cell):
return self.layer(x) return self.layer(x)
class DepthWiseConv(nn.Cell):
"""depth-wise convolution"""
def __init__(self, in_planes, kernel_size, stride):
super(DepthWiseConv, self).__init__()
platform = context.get_context("device_target")
weight_shape = [1, kernel_size, in_planes]
weight_init = _initialize_weight_goog(shape=weight_shape)
if platform == "GPU":
self.depthwise_conv = P.Conv2D(out_channel=in_planes*1,
kernel_size=kernel_size,
stride=stride,
pad=int(kernel_size/2),
pad_mode="pad",
group=in_planes)
self.weight = Parameter(initializer(weight_init,
[in_planes*1, 1, kernel_size, kernel_size]))
else:
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=1,
kernel_size=kernel_size,
stride=stride, pad_mode='pad',
pad=int(kernel_size/2))
self.weight = Parameter(initializer(weight_init,
[1, in_planes, kernel_size, kernel_size]))
def construct(self, x):
x = self.depthwise_conv(x, self.weight)
return x
class DropConnect(nn.Cell): class DropConnect(nn.Cell):
"""drop connect implementation""" """drop connect implementation"""
@ -584,7 +543,9 @@ class DepthwiseSeparableConv(nn.Cell):
self.has_pw_act = pw_act self.has_pw_act = pw_act
self.act_fn = Swish() self.act_fn = Swish()
self.drop_connect_rate = drop_connect_rate self.drop_connect_rate = drop_connect_rate
self.conv_dw = DepthWiseConv(in_chs, dw_kernel_size, stride) self.conv_dw = nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride, pad_mode="pad",
padding=int(dw_kernel_size/2), has_bias=False, group=in_chs,
weight_init=_initialize_weight_goog(shape=[1, dw_kernel_size, in_chs]))
self.bn1 = _fused_bn(in_chs, **bn_args) self.bn1 = _fused_bn(in_chs, **bn_args)
if self.has_se: if self.has_se:
@ -640,7 +601,9 @@ class InvertedResidual(nn.Cell):
if self.shuffle_type is not None and isinstance(exp_kernel_size, list): if self.shuffle_type is not None and isinstance(exp_kernel_size, list):
self.shuffle = None self.shuffle = None
self.conv_dw = DepthWiseConv(mid_chs, dw_kernel_size, stride) self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride, pad_mode="pad",
padding=int(dw_kernel_size/2), has_bias=False, group=mid_chs,
weight_init=_initialize_weight_goog(shape=[1, dw_kernel_size, mid_chs]))
self.bn2 = _fused_bn(mid_chs, **bn_args) self.bn2 = _fused_bn(mid_chs, **bn_args)
if self.has_se: if self.has_se:

View File

@ -16,34 +16,6 @@
import math import math
import mindspore.nn as nn import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore.common.initializer import initializer
from mindspore import Parameter
class DepthWiseConv(nn.Cell):
'''Build DepthWise conv.'''
def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False):
super(DepthWiseConv, self).__init__()
self.has_bias = has_bias
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=channel_multiplier, kernel_size=kernel_size,
stride=stride, pad_mode=pad_mode, pad=pad)
self.bias_add = P.BiasAdd()
weight_shape = [channel_multiplier, in_planes, kernel_size[0], kernel_size[1]]
self.weight = Parameter(initializer('ones', weight_shape))
if has_bias:
bias_shape = [channel_multiplier * in_planes]
self.bias = Parameter(initializer('zeros', bias_shape))
else:
self.bias = None
def construct(self, x):
output = self.depthwise_conv(x, self.weight)
if self.has_bias:
output = self.bias_add(output, self.bias)
return output
class DSCNN(nn.Cell): class DSCNN(nn.Cell):
@ -85,8 +57,9 @@ class DSCNN(nn.Cell):
seq_cell.append(nn.BatchNorm2d(num_features=conv_feat[layer_no], momentum=0.98)) seq_cell.append(nn.BatchNorm2d(num_features=conv_feat[layer_no], momentum=0.98))
in_channel = conv_feat[layer_no] in_channel = conv_feat[layer_no]
else: else:
seq_cell.append(DepthWiseConv(in_planes=in_channel, kernel_size=(conv_kt[layer_no], conv_kf[layer_no]), seq_cell.append(nn.Conv2d(in_channel, in_channel, kernel_size=(conv_kt[layer_no], conv_kf[layer_no]),
stride=(conv_st[layer_no], conv_sf[layer_no]), pad_mode='same', pad=0)) stride=(conv_st[layer_no], conv_sf[layer_no]), pad_mode='same',
has_bias=False, group=in_channel, weight_init='ones'))
seq_cell.append(nn.BatchNorm2d(num_features=in_channel, momentum=0.98)) seq_cell.append(nn.BatchNorm2d(num_features=in_channel, momentum=0.98))
seq_cell.append(nn.ReLU()) seq_cell.append(nn.ReLU())
seq_cell.append(nn.Conv2d(in_channels=in_channel, out_channels=conv_feat[layer_no], kernel_size=(1, 1), seq_cell.append(nn.Conv2d(in_channels=in_channel, out_channels=conv_feat[layer_no], kernel_size=(1, 1),