diff --git a/mindspore/model_zoo/mobilenetv2/src/mobilenetV2.py b/mindspore/model_zoo/mobilenetV2.py similarity index 100% rename from mindspore/model_zoo/mobilenetv2/src/mobilenetV2.py rename to mindspore/model_zoo/mobilenetV2.py diff --git a/mindspore/model_zoo/mobilenetv3/src/mobilenetV3.py b/mindspore/model_zoo/mobilenetV3.py similarity index 100% rename from mindspore/model_zoo/mobilenetv3/src/mobilenetV3.py rename to mindspore/model_zoo/mobilenetV3.py diff --git a/mindspore/model_zoo/mobilenetv2/Readme.md b/model_zoo/mobilenetv2/Readme.md similarity index 100% rename from mindspore/model_zoo/mobilenetv2/Readme.md rename to model_zoo/mobilenetv2/Readme.md diff --git a/mindspore/model_zoo/mobilenetv2/eval.py b/model_zoo/mobilenetv2/eval.py similarity index 100% rename from mindspore/model_zoo/mobilenetv2/eval.py rename to model_zoo/mobilenetv2/eval.py diff --git a/mindspore/model_zoo/mobilenetv2/scripts/run_infer.sh b/model_zoo/mobilenetv2/scripts/run_infer.sh similarity index 100% rename from mindspore/model_zoo/mobilenetv2/scripts/run_infer.sh rename to model_zoo/mobilenetv2/scripts/run_infer.sh diff --git a/mindspore/model_zoo/mobilenetv2/scripts/run_train.sh b/model_zoo/mobilenetv2/scripts/run_train.sh similarity index 100% rename from mindspore/model_zoo/mobilenetv2/scripts/run_train.sh rename to model_zoo/mobilenetv2/scripts/run_train.sh diff --git a/mindspore/model_zoo/mobilenetv2/src/config.py b/model_zoo/mobilenetv2/src/config.py similarity index 96% rename from mindspore/model_zoo/mobilenetv2/src/config.py rename to model_zoo/mobilenetv2/src/config.py index c8885336b2e..98e0aef0ec6 100644 --- a/mindspore/model_zoo/mobilenetv2/src/config.py +++ b/model_zoo/mobilenetv2/src/config.py @@ -39,10 +39,10 @@ config_gpu = ed({ "num_classes": 1000, "image_height": 224, "image_width": 224, - "batch_size": 64, + "batch_size": 150, "epoch_size": 200, - "warmup_epochs": 4, - "lr": 0.5, + "warmup_epochs": 0, + "lr": 0.8, "momentum": 0.9, "weight_decay": 4e-5, "label_smooth": 0.1, diff --git a/mindspore/model_zoo/mobilenetv2/src/dataset.py b/model_zoo/mobilenetv2/src/dataset.py similarity index 100% rename from mindspore/model_zoo/mobilenetv2/src/dataset.py rename to model_zoo/mobilenetv2/src/dataset.py diff --git a/mindspore/model_zoo/mobilenetv2/src/launch.py b/model_zoo/mobilenetv2/src/launch.py similarity index 100% rename from mindspore/model_zoo/mobilenetv2/src/launch.py rename to model_zoo/mobilenetv2/src/launch.py diff --git a/mindspore/model_zoo/mobilenetv2/src/lr_generator.py b/model_zoo/mobilenetv2/src/lr_generator.py similarity index 100% rename from mindspore/model_zoo/mobilenetv2/src/lr_generator.py rename to model_zoo/mobilenetv2/src/lr_generator.py diff --git a/mindspore/model_zoo/mobilenet.py b/model_zoo/mobilenetv2/src/mobilenetV2.py similarity index 82% rename from mindspore/model_zoo/mobilenet.py rename to model_zoo/mobilenetv2/src/mobilenetV2.py index 6539c3e2690..df35c5f3693 100644 --- a/mindspore/model_zoo/mobilenet.py +++ b/model_zoo/mobilenetv2/src/mobilenetV2.py @@ -20,20 +20,10 @@ from mindspore.ops.operations import TensorAdd from mindspore import Parameter, Tensor from mindspore.common.initializer import initializer -__all__ = ['MobileNetV2', 'mobilenet_v2'] +__all__ = ['mobilenet_v2'] def _make_divisible(v, divisor, min_value=None): - """ - This function is taken from the original tf repo. - It ensures that all layers have a channel number that is divisible by 8 - It can be seen here: - https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py - :param v: - :param divisor: - :param min_value: - :return: - """ if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) @@ -55,6 +45,7 @@ class GlobalAvgPooling(nn.Cell): Examples: >>> GlobalAvgPooling() """ + def __init__(self): super(GlobalAvgPooling, self).__init__() self.mean = P.ReduceMean(keep_dims=False) @@ -82,6 +73,7 @@ class DepthwiseConv(nn.Cell): Examples: >>> DepthwiseConv(16, 3, 1, 'pad', 1, channel_multiplier=1) """ + def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False): super(DepthwiseConv, self).__init__() self.has_bias = has_bias @@ -126,14 +118,19 @@ class ConvBNReLU(nn.Cell): Examples: >>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1) """ - def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1): + + def __init__(self, platform, in_planes, out_planes, kernel_size=3, stride=1, groups=1): super(ConvBNReLU, self).__init__() padding = (kernel_size - 1) // 2 if groups == 1: - conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', - padding=padding) + conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', padding=padding) else: - conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding) + if platform == "Ascend": + conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding) + elif platform == "GPU": + conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, + group=in_planes, pad_mode='pad', padding=padding) + layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()] self.features = nn.SequentialCell(layers) @@ -158,7 +155,8 @@ class InvertedResidual(nn.Cell): Examples: >>> ResidualBlock(3, 256, 1, 1) """ - def __init__(self, inp, oup, stride, expand_ratio): + + def __init__(self, platform, inp, oup, stride, expand_ratio): super(InvertedResidual, self).__init__() assert stride in [1, 2] @@ -167,12 +165,14 @@ class InvertedResidual(nn.Cell): layers = [] if expand_ratio != 1: - layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1)) + layers.append(ConvBNReLU(platform, inp, hidden_dim, kernel_size=1)) layers.extend([ # dw - ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim), + ConvBNReLU(platform, hidden_dim, hidden_dim, + stride=stride, groups=hidden_dim), # pw-linear - nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False), + nn.Conv2d(hidden_dim, oup, kernel_size=1, + stride=1, has_bias=False), nn.BatchNorm2d(oup), ]) self.conv = nn.SequentialCell(layers) @@ -203,7 +203,8 @@ class MobileNetV2(nn.Cell): Examples: >>> MobileNetV2(num_classes=1000) """ - def __init__(self, num_classes=1000, width_mult=1., + + def __init__(self, platform, num_classes=1000, width_mult=1., has_dropout=False, inverted_residual_setting=None, round_nearest=8): super(MobileNetV2, self).__init__() block = InvertedResidual @@ -226,16 +227,16 @@ class MobileNetV2(nn.Cell): # building first layer input_channel = _make_divisible(input_channel * width_mult, round_nearest) self.out_channels = _make_divisible(last_channel * max(1.0, width_mult), round_nearest) - features = [ConvBNReLU(3, input_channel, stride=2)] + features = [ConvBNReLU(platform, 3, input_channel, stride=2)] # building inverted residual blocks for t, c, n, s in self.cfgs: output_channel = _make_divisible(c * width_mult, round_nearest) for i in range(n): stride = s if i == 0 else 1 - features.append(block(input_channel, output_channel, stride, expand_ratio=t)) + features.append(block(platform, input_channel, output_channel, stride, expand_ratio=t)) input_channel = output_channel # building last several layers - features.append(ConvBNReLU(input_channel, self.out_channels, kernel_size=1)) + features.append(ConvBNReLU(platform, input_channel, self.out_channels, kernel_size=1)) # make it nn.CellList self.features = nn.SequentialCell(features) # mobilenet head @@ -268,14 +269,19 @@ class MobileNetV2(nn.Cell): m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n), m.weight.data.shape()).astype("float32"))) if m.bias is not None: - m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32"))) + m.bias.set_parameter_data( + Tensor(np.zeros(m.bias.data.shape(), dtype="float32"))) elif isinstance(m, nn.BatchNorm2d): - m.gamma.set_parameter_data(Tensor(np.ones(m.gamma.data.shape(), dtype="float32"))) - m.beta.set_parameter_data(Tensor(np.zeros(m.beta.data.shape(), dtype="float32"))) + m.gamma.set_parameter_data( + Tensor(np.ones(m.gamma.data.shape(), dtype="float32"))) + m.beta.set_parameter_data( + Tensor(np.zeros(m.beta.data.shape(), dtype="float32"))) elif isinstance(m, nn.Dense): - m.weight.set_parameter_data(Tensor(np.random.normal(0, 0.01, m.weight.data.shape()).astype("float32"))) + m.weight.set_parameter_data(Tensor(np.random.normal( + 0, 0.01, m.weight.data.shape()).astype("float32"))) if m.bias is not None: - m.bias.set_parameter_data(Tensor(np.zeros(m.bias.data.shape(), dtype="float32"))) + m.bias.set_parameter_data( + Tensor(np.zeros(m.bias.data.shape(), dtype="float32"))) def mobilenet_v2(**kwargs): diff --git a/mindspore/model_zoo/mobilenetv2/train.py b/model_zoo/mobilenetv2/train.py similarity index 98% rename from mindspore/model_zoo/mobilenetv2/train.py rename to model_zoo/mobilenetv2/train.py index 80c51380d4d..2c211b375a4 100644 --- a/mindspore/model_zoo/mobilenetv2/train.py +++ b/model_zoo/mobilenetv2/train.py @@ -205,7 +205,7 @@ if __name__ == '__main__': config_ck = CheckpointConfig(save_checkpoint_steps=config_gpu.save_checkpoint_epochs * step_size, keep_checkpoint_max=config_gpu.keep_checkpoint_max) ckpt_cb = ModelCheckpoint( - prefix="mobilenet", directory=config_gpu.save_checkpoint_path, config=config_ck) + prefix="mobilenetV2", directory=config_gpu.save_checkpoint_path, config=config_ck) cb += [ckpt_cb] # begine train model.train(epoch_size, dataset, callbacks=cb) @@ -265,7 +265,7 @@ if __name__ == '__main__': config_ck = CheckpointConfig(save_checkpoint_steps=config_ascend.save_checkpoint_epochs * step_size, keep_checkpoint_max=config_ascend.keep_checkpoint_max) ckpt_cb = ModelCheckpoint( - prefix="mobilenet", directory=config_ascend.save_checkpoint_path, config=config_ck) + prefix="mobilenetV2", directory=config_ascend.save_checkpoint_path, config=config_ck) cb += [ckpt_cb] model.train(epoch_size, dataset, callbacks=cb) else: diff --git a/mindspore/model_zoo/mobilenetv3/Readme.md b/model_zoo/mobilenetv3/Readme.md similarity index 100% rename from mindspore/model_zoo/mobilenetv3/Readme.md rename to model_zoo/mobilenetv3/Readme.md diff --git a/mindspore/model_zoo/mobilenetv3/eval.py b/model_zoo/mobilenetv3/eval.py similarity index 100% rename from mindspore/model_zoo/mobilenetv3/eval.py rename to model_zoo/mobilenetv3/eval.py diff --git a/mindspore/model_zoo/mobilenetv3/scripts/run_infer.sh b/model_zoo/mobilenetv3/scripts/run_infer.sh similarity index 100% rename from mindspore/model_zoo/mobilenetv3/scripts/run_infer.sh rename to model_zoo/mobilenetv3/scripts/run_infer.sh diff --git a/mindspore/model_zoo/mobilenetv3/scripts/run_train.sh b/model_zoo/mobilenetv3/scripts/run_train.sh similarity index 100% rename from mindspore/model_zoo/mobilenetv3/scripts/run_train.sh rename to model_zoo/mobilenetv3/scripts/run_train.sh diff --git a/mindspore/model_zoo/mobilenetv3/src/config.py b/model_zoo/mobilenetv3/src/config.py similarity index 96% rename from mindspore/model_zoo/mobilenetv3/src/config.py rename to model_zoo/mobilenetv3/src/config.py index b6b4cd4e9b8..279a55c34b5 100644 --- a/mindspore/model_zoo/mobilenetv3/src/config.py +++ b/model_zoo/mobilenetv3/src/config.py @@ -39,10 +39,10 @@ config_gpu = ed({ "num_classes": 1000, "image_height": 224, "image_width": 224, - "batch_size": 64, - "epoch_size": 300, + "batch_size": 150, + "epoch_size": 370, "warmup_epochs": 4, - "lr": 0.5, + "lr": 1.54, "momentum": 0.9, "weight_decay": 4e-5, "label_smooth": 0.1, diff --git a/mindspore/model_zoo/mobilenetv3/src/dataset.py b/model_zoo/mobilenetv3/src/dataset.py similarity index 100% rename from mindspore/model_zoo/mobilenetv3/src/dataset.py rename to model_zoo/mobilenetv3/src/dataset.py diff --git a/mindspore/model_zoo/mobilenetv3/src/launch.py b/model_zoo/mobilenetv3/src/launch.py similarity index 100% rename from mindspore/model_zoo/mobilenetv3/src/launch.py rename to model_zoo/mobilenetv3/src/launch.py diff --git a/mindspore/model_zoo/mobilenetv3/src/lr_generator.py b/model_zoo/mobilenetv3/src/lr_generator.py similarity index 100% rename from mindspore/model_zoo/mobilenetv3/src/lr_generator.py rename to model_zoo/mobilenetv3/src/lr_generator.py diff --git a/model_zoo/mobilenetv3/src/mobilenetV3.py b/model_zoo/mobilenetv3/src/mobilenetV3.py new file mode 100644 index 00000000000..820e60493f7 --- /dev/null +++ b/model_zoo/mobilenetv3/src/mobilenetV3.py @@ -0,0 +1,390 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +"""MobileNetV3 model define""" +from functools import partial +import numpy as np +import mindspore.nn as nn +from mindspore.ops import operations as P +from mindspore import Tensor + + +__all__ = ['mobilenet_v3_large', + 'mobilenet_v3_small'] + + +def _make_divisible(x, divisor=8): + return int(np.ceil(x * 1. / divisor) * divisor) + + +class Activation(nn.Cell): + """ + Activation definition. + + Args: + act_func(string): activation name. + + Returns: + Tensor, output tensor. + """ + + def __init__(self, act_func): + super(Activation, self).__init__() + if act_func == 'relu': + self.act = nn.ReLU() + elif act_func == 'relu6': + self.act = nn.ReLU6() + elif act_func in ('hsigmoid', 'hard_sigmoid'): + self.act = nn.HSigmoid() + elif act_func in ('hswish', 'hard_swish'): + self.act = nn.HSwish() + else: + raise NotImplementedError + + def construct(self, x): + return self.act(x) + + +class GlobalAvgPooling(nn.Cell): + """ + Global avg pooling definition. + + Args: + + Returns: + Tensor, output tensor. + + Examples: + >>> GlobalAvgPooling() + """ + + def __init__(self, keep_dims=False): + super(GlobalAvgPooling, self).__init__() + self.mean = P.ReduceMean(keep_dims=keep_dims) + + def construct(self, x): + x = self.mean(x, (2, 3)) + return x + + +class SE(nn.Cell): + """ + SE warpper definition. + + Args: + num_out (int): Output channel. + ratio (int): middle output ratio. + + Returns: + Tensor, output tensor. + + Examples: + >>> SE(4) + """ + + def __init__(self, num_out, ratio=4): + super(SE, self).__init__() + num_mid = _make_divisible(num_out // ratio) + self.pool = GlobalAvgPooling(keep_dims=True) + self.conv1 = nn.Conv2d(in_channels=num_out, out_channels=num_mid, + kernel_size=1, has_bias=True, pad_mode='pad') + self.act1 = Activation('relu') + self.conv2 = nn.Conv2d(in_channels=num_mid, out_channels=num_out, + kernel_size=1, has_bias=True, pad_mode='pad') + self.act2 = Activation('hsigmoid') + self.mul = P.Mul() + + def construct(self, x): + out = self.pool(x) + out = self.conv1(out) + out = self.act1(out) + out = self.conv2(out) + out = self.act2(out) + out = self.mul(x, out) + return out + + +class Unit(nn.Cell): + """ + Unit warpper definition. + + Args: + num_in (int): Input channel. + num_out (int): Output channel. + kernel_size (int): Input kernel size. + stride (int): Stride size. + padding (int): Padding number. + num_groups (int): Output num group. + use_act (bool): Used activation or not. + act_type (string): Activation type. + + Returns: + Tensor, output tensor. + + Examples: + >>> Unit(3, 3) + """ + + def __init__(self, num_in, num_out, kernel_size=1, stride=1, padding=0, num_groups=1, + use_act=True, act_type='relu'): + super(Unit, self).__init__() + self.conv = nn.Conv2d(in_channels=num_in, + out_channels=num_out, + kernel_size=kernel_size, + stride=stride, + padding=padding, + group=num_groups, + has_bias=False, + pad_mode='pad') + self.bn = nn.BatchNorm2d(num_out) + self.use_act = use_act + self.act = Activation(act_type) if use_act else None + + def construct(self, x): + out = self.conv(x) + out = self.bn(out) + if self.use_act: + out = self.act(out) + return out + + +class ResUnit(nn.Cell): + """ + ResUnit warpper definition. + + Args: + num_in (int): Input channel. + num_mid (int): Middle channel. + num_out (int): Output channel. + kernel_size (int): Input kernel size. + stride (int): Stride size. + act_type (str): Activation type. + use_se (bool): Use SE warpper or not. + + Returns: + Tensor, output tensor. + + Examples: + >>> ResUnit(16, 3, 1, 1) + """ + def __init__(self, num_in, num_mid, num_out, kernel_size, stride=1, act_type='relu', use_se=False): + super(ResUnit, self).__init__() + self.use_se = use_se + self.first_conv = (num_out != num_mid) + self.use_short_cut_conv = True + + if self.first_conv: + self.expand = Unit(num_in, num_mid, kernel_size=1, + stride=1, padding=0, act_type=act_type) + else: + self.expand = None + self.conv1 = Unit(num_mid, num_mid, kernel_size=kernel_size, stride=stride, + padding=self._get_pad(kernel_size), act_type=act_type, num_groups=num_mid) + if use_se: + self.se = SE(num_mid) + self.conv2 = Unit(num_mid, num_out, kernel_size=1, stride=1, + padding=0, act_type=act_type, use_act=False) + if num_in != num_out or stride != 1: + self.use_short_cut_conv = False + self.add = P.TensorAdd() if self.use_short_cut_conv else None + + def construct(self, x): + if self.first_conv: + out = self.expand(x) + else: + out = x + out = self.conv1(out) + if self.use_se: + out = self.se(out) + out = self.conv2(out) + if self.use_short_cut_conv: + out = self.add(x, out) + return out + + def _get_pad(self, kernel_size): + """set the padding number""" + pad = 0 + if kernel_size == 1: + pad = 0 + elif kernel_size == 3: + pad = 1 + elif kernel_size == 5: + pad = 2 + elif kernel_size == 7: + pad = 3 + else: + raise NotImplementedError + return pad + + +class MobileNetV3(nn.Cell): + """ + MobileNetV3 architecture. + + Args: + model_cfgs (Cell): number of classes. + num_classes (int): Output number classes. + multiplier (int): Channels multiplier for round to 8/16 and others. Default is 1. + final_drop (float): Dropout number. + round_nearest (list): Channel round to . Default is 8. + Returns: + Tensor, output tensor. + + Examples: + >>> MobileNetV3(num_classes=1000) + """ + + def __init__(self, model_cfgs, num_classes=1000, multiplier=1., final_drop=0., round_nearest=8): + super(MobileNetV3, self).__init__() + self.cfgs = model_cfgs['cfg'] + self.inplanes = 16 + self.features = [] + first_conv_in_channel = 3 + first_conv_out_channel = _make_divisible(multiplier * self.inplanes) + + self.features.append(nn.Conv2d(in_channels=first_conv_in_channel, + out_channels=first_conv_out_channel, + kernel_size=3, padding=1, stride=2, + has_bias=False, pad_mode='pad')) + self.features.append(nn.BatchNorm2d(first_conv_out_channel)) + self.features.append(Activation('hswish')) + for layer_cfg in self.cfgs: + self.features.append(self._make_layer(kernel_size=layer_cfg[0], + exp_ch=_make_divisible(multiplier * layer_cfg[1]), + out_channel=_make_divisible(multiplier * layer_cfg[2]), + use_se=layer_cfg[3], + act_func=layer_cfg[4], + stride=layer_cfg[5])) + output_channel = _make_divisible(multiplier * model_cfgs["cls_ch_squeeze"]) + self.features.append(nn.Conv2d(in_channels=_make_divisible(multiplier * self.cfgs[-1][2]), + out_channels=output_channel, + kernel_size=1, padding=0, stride=1, + has_bias=False, pad_mode='pad')) + self.features.append(nn.BatchNorm2d(output_channel)) + self.features.append(Activation('hswish')) + self.features.append(GlobalAvgPooling(keep_dims=True)) + self.features.append(nn.Conv2d(in_channels=output_channel, + out_channels=model_cfgs['cls_ch_expand'], + kernel_size=1, padding=0, stride=1, + has_bias=False, pad_mode='pad')) + self.features.append(Activation('hswish')) + if final_drop > 0: + self.features.append((nn.Dropout(final_drop))) + + # make it nn.CellList + self.features = nn.SequentialCell(self.features) + self.output = nn.Conv2d(in_channels=model_cfgs['cls_ch_expand'], + out_channels=num_classes, + kernel_size=1, has_bias=True, pad_mode='pad') + self.squeeze = P.Squeeze(axis=(2, 3)) + + self._initialize_weights() + + def construct(self, x): + x = self.features(x) + x = self.output(x) + x = self.squeeze(x) + return x + + def _make_layer(self, kernel_size, exp_ch, out_channel, use_se, act_func, stride=1): + mid_planes = exp_ch + out_planes = out_channel + #num_in, num_mid, num_out, kernel_size, stride=1, act_type='relu', use_se=False): + layer = ResUnit(self.inplanes, mid_planes, out_planes, + kernel_size, stride=stride, act_type=act_func, use_se=use_se) + self.inplanes = out_planes + return layer + + def _initialize_weights(self): + """ + Initialize weights. + + Args: + + Returns: + None. + + Examples: + >>> _initialize_weights() + """ + for _, m in self.cells_and_names(): + if isinstance(m, (nn.Conv2d)): + n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.weight.set_parameter_data(Tensor(np.random.normal(0, np.sqrt(2. / n), + m.weight.data.shape()).astype("float32"))) + if m.bias is not None: + m.bias.set_parameter_data( + Tensor(np.zeros(m.bias.data.shape(), dtype="float32"))) + elif isinstance(m, nn.BatchNorm2d): + m.gamma.set_parameter_data( + Tensor(np.ones(m.gamma.data.shape(), dtype="float32"))) + m.beta.set_parameter_data( + Tensor(np.zeros(m.beta.data.shape(), dtype="float32"))) + elif isinstance(m, nn.Dense): + m.weight.set_parameter_data(Tensor(np.random.normal( + 0, 0.01, m.weight.data.shape()).astype("float32"))) + if m.bias is not None: + m.bias.set_parameter_data( + Tensor(np.zeros(m.bias.data.shape(), dtype="float32"))) + + +def mobilenet_v3(model_name, **kwargs): + """ + Constructs a MobileNet V2 model + """ + model_cfgs = { + "large": { + "cfg": [ + # k, exp, c, se, nl, s, + [3, 16, 16, False, 'relu', 1], + [3, 64, 24, False, 'relu', 2], + [3, 72, 24, False, 'relu', 1], + [5, 72, 40, True, 'relu', 2], + [5, 120, 40, True, 'relu', 1], + [5, 120, 40, True, 'relu', 1], + [3, 240, 80, False, 'hswish', 2], + [3, 200, 80, False, 'hswish', 1], + [3, 184, 80, False, 'hswish', 1], + [3, 184, 80, False, 'hswish', 1], + [3, 480, 112, True, 'hswish', 1], + [3, 672, 112, True, 'hswish', 1], + [5, 672, 160, True, 'hswish', 2], + [5, 960, 160, True, 'hswish', 1], + [5, 960, 160, True, 'hswish', 1]], + "cls_ch_squeeze": 960, + "cls_ch_expand": 1280, + }, + "small": { + "cfg": [ + # k, exp, c, se, nl, s, + [3, 16, 16, True, 'relu', 2], + [3, 72, 24, False, 'relu', 2], + [3, 88, 24, False, 'relu', 1], + [5, 96, 40, True, 'hswish', 2], + [5, 240, 40, True, 'hswish', 1], + [5, 240, 40, True, 'hswish', 1], + [5, 120, 48, True, 'hswish', 1], + [5, 144, 48, True, 'hswish', 1], + [5, 288, 96, True, 'hswish', 2], + [5, 576, 96, True, 'hswish', 1], + [5, 576, 96, True, 'hswish', 1]], + "cls_ch_squeeze": 576, + "cls_ch_expand": 1280, + } + } + return MobileNetV3(model_cfgs[model_name], **kwargs) + + +mobilenet_v3_large = partial(mobilenet_v3, model_name="large") +mobilenet_v3_small = partial(mobilenet_v3, model_name="small") diff --git a/mindspore/model_zoo/mobilenetv3/train.py b/model_zoo/mobilenetv3/train.py similarity index 98% rename from mindspore/model_zoo/mobilenetv3/train.py rename to model_zoo/mobilenetv3/train.py index 724fed7cb84..578893ab75d 100644 --- a/mindspore/model_zoo/mobilenetv3/train.py +++ b/model_zoo/mobilenetv3/train.py @@ -205,7 +205,7 @@ if __name__ == '__main__': config_ck = CheckpointConfig(save_checkpoint_steps=config_gpu.save_checkpoint_epochs * step_size, keep_checkpoint_max=config_gpu.keep_checkpoint_max) ckpt_cb = ModelCheckpoint( - prefix="mobilenet", directory=config_gpu.save_checkpoint_path, config=config_ck) + prefix="mobilenetV3", directory=config_gpu.save_checkpoint_path, config=config_ck) cb += [ckpt_cb] # begine train model.train(epoch_size, dataset, callbacks=cb) @@ -265,7 +265,7 @@ if __name__ == '__main__': config_ck = CheckpointConfig(save_checkpoint_steps=config_ascend.save_checkpoint_epochs * step_size, keep_checkpoint_max=config_ascend.keep_checkpoint_max) ckpt_cb = ModelCheckpoint( - prefix="mobilenet", directory=config_ascend.save_checkpoint_path, config=config_ck) + prefix="mobilenetV3", directory=config_ascend.save_checkpoint_path, config=config_ck) cb += [ckpt_cb] model.train(epoch_size, dataset, callbacks=cb) else: