forked from mindspore-Ecosystem/mindspore
modify lenet&alexnet
This commit is contained in:
parent
b48d663c69
commit
15ccc5c56e
|
@ -25,7 +25,7 @@ This is the simple tutorial for training AlexNet in MindSpore.
|
|||
python train.py --data_path cifar-10-batches-bin
|
||||
```
|
||||
|
||||
You can get loss with each step similar to this:
|
||||
You will get the loss value of each step as following:
|
||||
|
||||
```bash
|
||||
epoch: 1 step: 1, loss is 2.2791853
|
||||
|
@ -36,17 +36,16 @@ epoch: 1 step: 1538, loss is 1.0221305
|
|||
...
|
||||
```
|
||||
|
||||
Then, test AlexNet according to network model
|
||||
Then, evaluate AlexNet according to network model
|
||||
```python
|
||||
# test AlexNet, 1 epoch training accuracy is up to 51.1%; 10 epoch training accuracy is up to 81.2%
|
||||
# evaluate AlexNet, 1 epoch training accuracy is up to 51.1%; 10 epoch training accuracy is up to 81.2%
|
||||
python eval.py --data_path cifar-10-verify-bin --mode test --ckpt_path checkpoint_alexnet-1_1562.ckpt
|
||||
```
|
||||
|
||||
## Note
|
||||
There are some optional arguments:
|
||||
Here are some optional parameters:
|
||||
|
||||
```bash
|
||||
-h, --help show this help message and exit
|
||||
--device_target {Ascend,GPU}
|
||||
device where the code will be implemented (default: Ascend)
|
||||
--data_path DATA_PATH
|
||||
|
|
|
@ -19,8 +19,8 @@ This is the simple and basic tutorial for constructing a network in MindSpore.
|
|||
│ t10k-labels.idx1-ubyte
|
||||
│
|
||||
└─train
|
||||
train-images.idx3-ubyte
|
||||
train-labels.idx1-ubyte
|
||||
train-images.idx3-ubyte
|
||||
train-labels.idx1-ubyte
|
||||
```
|
||||
|
||||
## Running the example
|
||||
|
@ -30,7 +30,7 @@ This is the simple and basic tutorial for constructing a network in MindSpore.
|
|||
python train.py --data_path MNIST_Data
|
||||
```
|
||||
|
||||
You can get loss with each step similar to this:
|
||||
You will get the loss value of each step as following:
|
||||
|
||||
```bash
|
||||
epoch: 1 step: 1, loss is 2.3040335
|
||||
|
@ -41,17 +41,16 @@ epoch: 1 step: 1741, loss is 0.05018193
|
|||
...
|
||||
```
|
||||
|
||||
Then, test LeNet according to network model
|
||||
Then, evaluate LeNet according to network model
|
||||
```python
|
||||
# test LeNet, after 1 epoch training, the accuracy is up to 96.5%
|
||||
# evaluate LeNet, after 1 epoch training, the accuracy is up to 96.5%
|
||||
python eval.py --data_path MNIST_Data --mode test --ckpt_path checkpoint_lenet-1_1875.ckpt
|
||||
```
|
||||
|
||||
## Note
|
||||
There are some optional arguments:
|
||||
Here are some optional parameters:
|
||||
|
||||
```bash
|
||||
-h, --help show this help message and exit
|
||||
--device_target {Ascend,GPU,CPU}
|
||||
device where the code will be implemented (default: Ascend)
|
||||
--data_path DATA_PATH
|
||||
|
|
Loading…
Reference in New Issue