forked from mindspore-Ecosystem/mindspore
add googlenet scripts
This commit is contained in:
parent
0edf22e68c
commit
152dfc51ee
|
@ -0,0 +1,106 @@
|
|||
# Googlenet Example
|
||||
|
||||
## Description
|
||||
|
||||
This example is for Googlenet model training and evaluation.
|
||||
|
||||
## Requirements
|
||||
|
||||
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||
|
||||
- Download the dataset [CIFAR-10](http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz).
|
||||
|
||||
> Unzip the CIFAR-10 dataset to any path you want and the folder structure should be as follows:
|
||||
> ```
|
||||
> .
|
||||
> ├── cifar-10-batches-bin # train dataset
|
||||
> └── cifar-10-verify-bin # infer dataset
|
||||
> ```
|
||||
|
||||
## Running the Example
|
||||
|
||||
### Training
|
||||
|
||||
```
|
||||
python train.py --data_path=your_data_path --device_id=6 > out.train.log 2>&1 &
|
||||
```
|
||||
The python command above will run in the background, you can view the results through the file `out.train.log`.
|
||||
|
||||
After training, you'll get some checkpoint files under the script folder by default.
|
||||
|
||||
You will get the loss value as following:
|
||||
```
|
||||
# grep "loss is " out.train.log
|
||||
epoch: 1 step: 390, loss is 1.4842823
|
||||
epcoh: 2 step: 390, loss is 1.0897788
|
||||
...
|
||||
```
|
||||
|
||||
### Evaluation
|
||||
|
||||
```
|
||||
python eval.py --data_path=your_data_path --device_id=6 --checkpoint_path=./train_googlenet_cifar10-125-390.ckpt > out.eval.log 2>&1 &
|
||||
```
|
||||
The above python command will run in the background, you can view the results through the file `out.eval.log`.
|
||||
|
||||
You will get the accuracy as following:
|
||||
```
|
||||
# grep "result: " out.eval.log
|
||||
result: {'acc': 0.934}
|
||||
```
|
||||
|
||||
### Distribute Training
|
||||
```
|
||||
sh run_distribute_train.sh rank_table.json your_data_path
|
||||
```
|
||||
The above shell script will run distribute training in the background, you can view the results through the file `train_parallel[X]/log`.
|
||||
|
||||
You will get the loss value as following:
|
||||
```
|
||||
# grep "result: " train_parallel*/log
|
||||
train_parallel0/log:epoch: 1 step: 48, loss is 1.4302931
|
||||
train_parallel0/log:epcoh: 2 step: 48, loss is 1.4023874
|
||||
...
|
||||
train_parallel1/log:epoch: 1 step: 48, loss is 1.3458025
|
||||
train_parallel1/log:epcoh: 2 step: 48, loss is 1.3729336
|
||||
...
|
||||
...
|
||||
```
|
||||
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
|
||||
|
||||
## Usage:
|
||||
|
||||
### Training
|
||||
```
|
||||
usage: train.py [--device_target TARGET][--data_path DATA_PATH]
|
||||
[--device_id DEVICE_ID]
|
||||
|
||||
parameters/options:
|
||||
--device_target the training backend type, default is Ascend.
|
||||
--data_path the storage path of dataset
|
||||
--device_id the device which used to train model.
|
||||
|
||||
```
|
||||
|
||||
### Evaluation
|
||||
|
||||
```
|
||||
usage: eval.py [--device_target TARGET][--data_path DATA_PATH]
|
||||
[--device_id DEVICE_ID][--checkpoint_path CKPT_PATH]
|
||||
|
||||
parameters/options:
|
||||
--device_target the evaluation backend type, default is Ascend.
|
||||
--data_path the storage path of datasetd
|
||||
--device_id the device which used to evaluate model.
|
||||
--checkpoint_path the checkpoint file path used to evaluate model.
|
||||
```
|
||||
|
||||
### Distribute Training
|
||||
|
||||
```
|
||||
Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATA_PATH]
|
||||
|
||||
parameters/options:
|
||||
MINDSPORE_HCCL_CONFIG_PATH HCCL configuration file path.
|
||||
DATA_PATH the storage path of dataset.
|
||||
```
|
|
@ -0,0 +1,31 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
network config setting, will be used in main.py
|
||||
"""
|
||||
from easydict import EasyDict as edict
|
||||
|
||||
cifar_cfg = edict({
|
||||
'num_classes': 10,
|
||||
'lr_init': 0.1,
|
||||
'batch_size': 128,
|
||||
'epoch_size': 125,
|
||||
'momentum': 0.9,
|
||||
'weight_decay': 5e-4,
|
||||
'buffer_size': 10,
|
||||
'image_height': 224,
|
||||
'image_width': 224,
|
||||
'keep_checkpoint_max': 10
|
||||
})
|
|
@ -0,0 +1,67 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Data operations, will be used in train.py and eval.py
|
||||
"""
|
||||
import os
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
from config import cifar_cfg as cfg
|
||||
|
||||
|
||||
def create_dataset(data_home, repeat_num=1, training=True):
|
||||
"""Data operations."""
|
||||
ds.config.set_seed(1)
|
||||
data_dir = os.path.join(data_home, "cifar-10-batches-bin")
|
||||
if not training:
|
||||
data_dir = os.path.join(data_home, "cifar-10-verify-bin")
|
||||
|
||||
rank_size = int(os.environ.get("RANK_SIZE")) if os.environ.get("RANK_SIZE") else None
|
||||
rank_id = int(os.environ.get("RANK_ID")) if os.environ.get("RANK_ID") else None
|
||||
data_set = ds.Cifar10Dataset(data_dir, num_shards=rank_size, shard_id=rank_id)
|
||||
|
||||
resize_height = cfg.image_height
|
||||
resize_width = cfg.image_width
|
||||
|
||||
# define map operations
|
||||
random_crop_op = vision.RandomCrop((32, 32), (4, 4, 4, 4)) # padding_mode default CONSTANT
|
||||
random_horizontal_op = vision.RandomHorizontalFlip()
|
||||
resize_op = vision.Resize((resize_height, resize_width)) # interpolation default BILINEAR
|
||||
normalize_op = vision.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
|
||||
changeswap_op = vision.HWC2CHW()
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
|
||||
c_trans = []
|
||||
if training:
|
||||
c_trans = [random_crop_op, random_horizontal_op]
|
||||
c_trans += [resize_op, normalize_op, changeswap_op]
|
||||
|
||||
# apply map operations on images
|
||||
data_set = data_set.map(input_columns="label", operations=type_cast_op)
|
||||
data_set = data_set.map(input_columns="image", operations=c_trans)
|
||||
|
||||
# apply repeat operations
|
||||
data_set = data_set.repeat(repeat_num)
|
||||
|
||||
# apply shuffle operations
|
||||
data_set = data_set.shuffle(buffer_size=10)
|
||||
|
||||
# apply batch operations
|
||||
data_set = data_set.batch(batch_size=cfg.batch_size, drop_remainder=True)
|
||||
|
||||
return data_set
|
|
@ -0,0 +1,56 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
##############test googlenet example on cifar10#################
|
||||
python eval.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
|
||||
"""
|
||||
import argparse
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
from mindspore.model_zoo.googlenet import GooGLeNet
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
import dataset
|
||||
from config import cifar_cfg as cfg
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Cifar10 classification')
|
||||
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
|
||||
help='device where the code will be implemented. (Default: Ascend)')
|
||||
parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved')
|
||||
parser.add_argument('--checkpoint_path', type=str, default=None, help='checkpoint file path.')
|
||||
parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
|
||||
context.set_context(device_id=args_opt.device_id)
|
||||
context.set_context(enable_mem_reuse=True)
|
||||
|
||||
net = GooGLeNet(num_classes=cfg.num_classes)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, cfg.momentum,
|
||||
weight_decay=cfg.weight_decay)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
|
||||
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
dataset = dataset.create_dataset(args_opt.data_path, 1, False)
|
||||
res = model.eval(dataset)
|
||||
print("result: ", res)
|
|
@ -0,0 +1,53 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 2 ]
|
||||
then
|
||||
echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATA_PATH]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -f $1 ]
|
||||
then
|
||||
echo "error: MINDSPORE_HCCL_CONFIG_PATH=$1 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -d $2 ]
|
||||
then
|
||||
echo "error: DATA_PATH=$2 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=8
|
||||
export RANK_SIZE=8
|
||||
export MINDSPORE_HCCL_CONFIG_PATH=$1
|
||||
|
||||
for((i=0; i<${DEVICE_NUM}; i++))
|
||||
do
|
||||
export DEVICE_ID=$i
|
||||
export RANK_ID=$i
|
||||
rm -rf ./train_parallel$i
|
||||
mkdir ./train_parallel$i
|
||||
cp *.py ./train_parallel$i
|
||||
cp *.sh ./train_parallel$i
|
||||
cd ./train_parallel$i || exit
|
||||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
env > env.log
|
||||
python train.py --data_path=$2 --device_id=$i &> log &
|
||||
cd ..
|
||||
done
|
|
@ -0,0 +1,100 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
#################train googlent example on cifar10########################
|
||||
python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
|
||||
"""
|
||||
import argparse
|
||||
import os
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.communication.management import init
|
||||
from mindspore.model_zoo.googlenet import GooGLeNet
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
|
||||
|
||||
from dataset import create_dataset
|
||||
from config import cifar_cfg as cfg
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
|
||||
|
||||
def lr_steps(global_step, lr_max=None, total_epochs=None, steps_per_epoch=None):
|
||||
"""Set learning rate."""
|
||||
lr_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
|
||||
for i in range(total_steps):
|
||||
if i < decay_epoch_index[0]:
|
||||
lr_each_step.append(lr_max)
|
||||
elif i < decay_epoch_index[1]:
|
||||
lr_each_step.append(lr_max * 0.1)
|
||||
elif i < decay_epoch_index[2]:
|
||||
lr_each_step.append(lr_max * 0.01)
|
||||
else:
|
||||
lr_each_step.append(lr_max * 0.001)
|
||||
current_step = global_step
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
learning_rate = lr_each_step[current_step:]
|
||||
|
||||
return learning_rate
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Cifar10 classification')
|
||||
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
|
||||
help='device where the code will be implemented. (Default: Ascend)')
|
||||
parser.add_argument('--data_path', type=str, default='./cifar', help='path where the dataset is saved')
|
||||
parser.add_argument('--device_id', type=int, default=None, help='device id of GPU or Ascend. (Default: None)')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
|
||||
context.set_context(device_id=args_opt.device_id)
|
||||
context.set_context(enable_task_sink=True)
|
||||
context.set_context(enable_loop_sink=True)
|
||||
context.set_context(enable_mem_reuse=True)
|
||||
|
||||
device_num = int(os.environ.get("DEVICE_NUM", 1))
|
||||
if device_num > 1:
|
||||
context.reset_auto_parallel_context()
|
||||
context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||
mirror_mean=True)
|
||||
init()
|
||||
|
||||
dataset = create_dataset(args_opt.data_path, cfg.epoch_size)
|
||||
batch_num = dataset.get_dataset_size()
|
||||
|
||||
net = GooGLeNet(num_classes=cfg.num_classes)
|
||||
lr = lr_steps(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=batch_num)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum,
|
||||
weight_decay=cfg.weight_decay)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
|
||||
amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None)
|
||||
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=batch_num * 5, keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||||
time_cb = TimeMonitor(data_size=batch_num)
|
||||
ckpoint_cb = ModelCheckpoint(prefix="train_googlenet_cifar10", directory="./", config=config_ck)
|
||||
loss_cb = LossMonitor()
|
||||
model.train(cfg.epoch_size, dataset, callbacks=[time_cb, ckpoint_cb, loss_cb])
|
||||
print("train success")
|
|
@ -0,0 +1,143 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""GoogleNet"""
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.initializer import TruncatedNormal
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
def weight_variable():
|
||||
"""Weight variable."""
|
||||
return TruncatedNormal(0.02)
|
||||
|
||||
|
||||
class Conv2dBlock(nn.Cell):
|
||||
"""
|
||||
Basic convolutional block
|
||||
Args:
|
||||
in_channles (int): Input channel.
|
||||
out_channels (int): Output channel.
|
||||
kernel_size (int): Input kernel size. Default: 1
|
||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
||||
padding (int): Implicit paddings on both sides of the input. Default: 0.
|
||||
pad_mode (int): Padding mode. Optional values are "same", "valid", "pad". Default: "same".
|
||||
Returns:
|
||||
Tensor, output tensor.
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, pad_mode="same"):
|
||||
super(Conv2dBlock, self).__init__()
|
||||
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
|
||||
padding=padding, pad_mode=pad_mode, weight_init=weight_variable(),
|
||||
bias_init=False)
|
||||
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.bn(x)
|
||||
x = self.relu(x)
|
||||
return x
|
||||
|
||||
|
||||
class Inception(nn.Cell):
|
||||
"""
|
||||
Inception Block
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
|
||||
super(Inception, self).__init__()
|
||||
self.b1 = Conv2dBlock(in_channels, n1x1, kernel_size=1)
|
||||
self.b2 = nn.SequentialCell([Conv2dBlock(in_channels, n3x3red, kernel_size=1),
|
||||
Conv2dBlock(n3x3red, n3x3, kernel_size=3, padding=0)])
|
||||
self.b3 = nn.SequentialCell([Conv2dBlock(in_channels, n5x5red, kernel_size=1),
|
||||
Conv2dBlock(n5x5red, n5x5, kernel_size=3, padding=0)])
|
||||
self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=1, padding="same")
|
||||
self.b4 = Conv2dBlock(in_channels, pool_planes, kernel_size=1)
|
||||
self.concat = P.Concat(axis=1)
|
||||
|
||||
def construct(self, x):
|
||||
branch1 = self.b1(x)
|
||||
branch2 = self.b2(x)
|
||||
branch3 = self.b3(x)
|
||||
cell, argmax = self.maxpool(x)
|
||||
branch4 = self.b4(cell)
|
||||
_ = argmax
|
||||
return self.concat((branch1, branch2, branch3, branch4))
|
||||
|
||||
|
||||
class GooGLeNet(nn.Cell):
|
||||
"""
|
||||
Googlenet architecture
|
||||
"""
|
||||
|
||||
def __init__(self, num_classes):
|
||||
super(GooGLeNet, self).__init__()
|
||||
self.conv1 = Conv2dBlock(3, 64, kernel_size=7, stride=2, padding=0)
|
||||
self.maxpool1 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
|
||||
self.conv2 = Conv2dBlock(64, 64, kernel_size=1)
|
||||
self.conv3 = Conv2dBlock(64, 192, kernel_size=3, padding=0)
|
||||
self.maxpool2 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
|
||||
self.block3a = Inception(192, 64, 96, 128, 16, 32, 32)
|
||||
self.block3b = Inception(256, 128, 128, 192, 32, 96, 64)
|
||||
self.maxpool3 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
||||
|
||||
self.block4a = Inception(480, 192, 96, 208, 16, 48, 64)
|
||||
self.block4b = Inception(512, 160, 112, 224, 24, 64, 64)
|
||||
self.block4c = Inception(512, 128, 128, 256, 24, 64, 64)
|
||||
self.block4d = Inception(512, 112, 144, 288, 32, 64, 64)
|
||||
self.block4e = Inception(528, 256, 160, 320, 32, 128, 128)
|
||||
self.maxpool4 = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="same")
|
||||
|
||||
self.block5a = Inception(832, 256, 160, 320, 32, 128, 128)
|
||||
self.block5b = Inception(832, 384, 192, 384, 48, 128, 128)
|
||||
|
||||
self.mean = P.ReduceMean(keep_dims=True)
|
||||
self.dropout = nn.Dropout(keep_prob=0.8)
|
||||
self.flatten = nn.Flatten()
|
||||
self.classifier = nn.Dense(1024, num_classes, weight_init=weight_variable(),
|
||||
bias_init=weight_variable())
|
||||
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x, argmax = self.maxpool1(x)
|
||||
|
||||
x = self.conv2(x)
|
||||
x = self.conv3(x)
|
||||
x, argmax = self.maxpool2(x)
|
||||
|
||||
x = self.block3a(x)
|
||||
x = self.block3b(x)
|
||||
x, argmax = self.maxpool3(x)
|
||||
|
||||
x = self.block4a(x)
|
||||
x = self.block4b(x)
|
||||
x = self.block4c(x)
|
||||
x = self.block4d(x)
|
||||
x = self.block4e(x)
|
||||
x, argmax = self.maxpool4(x)
|
||||
|
||||
x = self.block5a(x)
|
||||
x = self.block5b(x)
|
||||
|
||||
x = self.mean(x, (2, 3))
|
||||
x = self.flatten(x)
|
||||
x = self.classifier(x)
|
||||
|
||||
_ = argmax
|
||||
return x
|
Loading…
Reference in New Issue