forked from mindspore-Ecosystem/mindspore
Add expander for AddN; update akg submodule
This commit is contained in:
parent
fc884e44b6
commit
149dab39c5
2
akg
2
akg
|
@ -1 +1 @@
|
||||||
Subproject commit 32af460cac1bb7d76bc1fd41f5866107cfffe1b9
|
Subproject commit 97dc7e96c2ffedf2e6e38310a903ffa205a6e656
|
|
@ -14,43 +14,44 @@
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
"""expanders init"""
|
"""expanders init"""
|
||||||
|
|
||||||
|
from .addn import AddN
|
||||||
from .assign_add import AssignAdd
|
from .assign_add import AssignAdd
|
||||||
from .batchnorm import BatchNorm
|
from .batchnorm import BatchNorm
|
||||||
from .batchnorm_grad import BatchNormGrad
|
from .batchnorm_grad import BatchNormGrad
|
||||||
from .bias_add import BiasAdd
|
from .bias_add import BiasAdd
|
||||||
from .bias_add_grad import BiasAddGrad
|
from .bias_add_grad import BiasAddGrad
|
||||||
from .clip_by_norm_no_div_sum import ClipByNormNoDivSum
|
from .clip_by_norm_no_div_sum import ClipByNormNoDivSum
|
||||||
|
from .conv2d import Conv2D
|
||||||
from .dropout_grad import DropoutGrad
|
from .dropout_grad import DropoutGrad
|
||||||
from .expand_dims import ExpandDims
|
from .expand_dims import ExpandDims
|
||||||
from .fused_adam import FusedAdam
|
from .fused_adam import FusedAdam
|
||||||
from .fused_adam_weight_decay import FusedAdamWeightDecay
|
from .fused_adam_weight_decay import FusedAdamWeightDecay
|
||||||
|
from .fused_mul_add import FusedMulAdd
|
||||||
from .gelu import GeLU
|
from .gelu import GeLU
|
||||||
from .gelu_grad import GeLUGrad
|
from .gelu_grad import GeLUGrad
|
||||||
from .gkdropout import GkDropout
|
from .gkdropout import GkDropout
|
||||||
|
from .lamb_apply_optimizer_assign import LambApplyOptimizerAssign
|
||||||
|
from .lamb_apply_weight_assign import LambApplyWeightAssign
|
||||||
from .layernorm import LayerNorm
|
from .layernorm import LayerNorm
|
||||||
from .layernorm_grad import LayerNormGrad
|
from .layernorm_grad import LayerNormGrad
|
||||||
from .logsoftmax import LogSoftmax
|
from .logsoftmax import LogSoftmax
|
||||||
from .logsoftmax_grad import LogSoftmaxGrad
|
from .logsoftmax_grad import LogSoftmaxGrad
|
||||||
|
from .matmul import BatchMatMul, MatMul
|
||||||
from .maximum_grad import MaximumGrad
|
from .maximum_grad import MaximumGrad
|
||||||
from .minimum_grad import MinimumGrad
|
from .minimum_grad import MinimumGrad
|
||||||
from .reduce_mean import ReduceMean
|
from .reduce_mean import ReduceMean
|
||||||
from .relu import ReLU
|
from .relu import ReLU
|
||||||
from .relu_grad import ReluGrad
|
from .relu_grad import ReluGrad
|
||||||
from .softmax import Softmax
|
|
||||||
from .sigmoid import Sigmoid
|
from .sigmoid import Sigmoid
|
||||||
from .sigmoid_grad import SigmoidGrad
|
|
||||||
from .sigmoid_cross_entropy_with_logits import SigmoidCrossEntropyWithLogits
|
from .sigmoid_cross_entropy_with_logits import SigmoidCrossEntropyWithLogits
|
||||||
from .sigmoid_cross_entropy_with_logits_grad import SigmoidCrossEntropyWithLogitsGrad
|
from .sigmoid_cross_entropy_with_logits_grad import SigmoidCrossEntropyWithLogitsGrad
|
||||||
|
from .sigmoid_grad import SigmoidGrad
|
||||||
|
from .softmax import Softmax
|
||||||
from .softmax_cross_entropy_with_logits import SoftmaxCrossEntropyWithLogits
|
from .softmax_cross_entropy_with_logits import SoftmaxCrossEntropyWithLogits
|
||||||
|
from .softmax_grad_ext import SoftmaxGradExt
|
||||||
from .sqrt_grad import SqrtGrad
|
from .sqrt_grad import SqrtGrad
|
||||||
from .square import Square
|
from .square import Square
|
||||||
|
from .square_sum_v1 import SquareSumV1
|
||||||
from .squeeze import Squeeze
|
from .squeeze import Squeeze
|
||||||
from .tanh_grad import TanhGrad
|
from .tanh_grad import TanhGrad
|
||||||
from .tile import Tile
|
from .tile import Tile
|
||||||
from .lamb_apply_optimizer_assign import LambApplyOptimizerAssign
|
|
||||||
from .lamb_apply_weight_assign import LambApplyWeightAssign
|
|
||||||
from .softmax_grad_ext import SoftmaxGradExt
|
|
||||||
from .square_sum_v1 import SquareSumV1
|
|
||||||
from .fused_mul_add import FusedMulAdd
|
|
||||||
from .conv2d import Conv2D
|
|
||||||
from .matmul import MatMul, BatchMatMul
|
|
||||||
|
|
|
@ -0,0 +1,32 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ===========================================================================
|
||||||
|
"""generate json desc for addn"""
|
||||||
|
from mindspore._extends.graph_kernel.model.model import GraphKernelUnsupportedException as GKException
|
||||||
|
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||||
|
|
||||||
|
|
||||||
|
@VLD.check_all_formats_same
|
||||||
|
class AddN(Expander):
|
||||||
|
"""Expand AddN to multiple Adds"""
|
||||||
|
|
||||||
|
def _check(self):
|
||||||
|
if len(self.inputs) < 2:
|
||||||
|
raise GKException("Inputs num of AddN should be greater than 1 but got {}".format(len(self.inputs)))
|
||||||
|
|
||||||
|
def _expand(self, graph_builder):
|
||||||
|
result = self.inputs[0]
|
||||||
|
for inp in self.inputs[1:]:
|
||||||
|
result = graph_builder.emit('Add', [result, inp])
|
||||||
|
return result
|
|
@ -53,7 +53,6 @@ std::vector<PrimitivePtr> GetClusterableOpList() {
|
||||||
prim::kPrimSub,
|
prim::kPrimSub,
|
||||||
prim::kPrimRsqrt,
|
prim::kPrimRsqrt,
|
||||||
prim::kPrimSqrt,
|
prim::kPrimSqrt,
|
||||||
prim::kPrimAddN,
|
|
||||||
prim::kPrimReciprocal,
|
prim::kPrimReciprocal,
|
||||||
prim::kPrimTanh,
|
prim::kPrimTanh,
|
||||||
prim::kPrimReshape,
|
prim::kPrimReshape,
|
||||||
|
|
|
@ -44,6 +44,7 @@ constexpr size_t kLambWeightInputIdx = 4;
|
||||||
|
|
||||||
std::vector<PrimitivePtr> GetExpandOps() {
|
std::vector<PrimitivePtr> GetExpandOps() {
|
||||||
std::vector<PrimitivePtr> expand_ops = {
|
std::vector<PrimitivePtr> expand_ops = {
|
||||||
|
prim::kPrimAddN,
|
||||||
prim::kPrimSquare,
|
prim::kPrimSquare,
|
||||||
prim::kPrimGeLUGrad,
|
prim::kPrimGeLUGrad,
|
||||||
prim::kPrimAssignAdd,
|
prim::kPrimAssignAdd,
|
||||||
|
|
|
@ -0,0 +1,67 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import mindspore.context as context
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.nn import Cell
|
||||||
|
import mindspore.ops.operations as P
|
||||||
|
|
||||||
|
|
||||||
|
class Net(Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.addn = P.AddN()
|
||||||
|
|
||||||
|
def construct(self, *args):
|
||||||
|
return self.addn(*args)
|
||||||
|
|
||||||
|
|
||||||
|
def get_output(*tensors):
|
||||||
|
net = Net()
|
||||||
|
output = net(tensors)
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
def test_basic():
|
||||||
|
np.random.seed(0)
|
||||||
|
tensors = []
|
||||||
|
expect = np.array([0], np.float32)
|
||||||
|
for _ in range(10):
|
||||||
|
t = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
|
||||||
|
expect = t + expect
|
||||||
|
tensors.append(Tensor(t))
|
||||||
|
|
||||||
|
output = get_output(*tensors).asnumpy()
|
||||||
|
|
||||||
|
assert np.allclose(expect, output, 1.e-4, 1.e-7)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_basic_gpu():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", enable_graph_kernel=True)
|
||||||
|
test_basic()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_basic_ascend():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", enable_graph_kernel=True)
|
||||||
|
test_basic()
|
Loading…
Reference in New Issue