diff --git a/mindspore/lite/micro/coder/CMakeLists.txt b/mindspore/lite/micro/coder/CMakeLists.txt index de7f1ee1578..bc5db6491ce 100644 --- a/mindspore/lite/micro/coder/CMakeLists.txt +++ b/mindspore/lite/micro/coder/CMakeLists.txt @@ -71,11 +71,28 @@ set(MICRO_CODER_SRC ${CMAKE_CURRENT_SOURCE_DIR}/opcoders/file_collector.cc ) +file(GLOB OPCODER_SRC_SERIALIZER ${CMAKE_CURRENT_SOURCE_DIR} + opcoders/serializers/nnacl_serializer/*.cc + ) + +file(GLOB_RECURSE OPCODER_SRC_FP32 RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} + opcoders/nnacl/fp32/*.cc + ) + + +file(GLOB_RECURSE OPCODER_SRC_INT8 RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} + opcoders/nnacl/int8/*.cc + ) + + list(APPEND MICRO_CODER_SRC ${MICRO_ALLOCATOR} ${MICRO_GENERATOR} ${MICRO_OPCODERS_BASE} ${MICRO_OPCODERS_CMSIS_NN} + ${OPCODER_SRC_SERIALIZER} + ${OPCODER_SRC_FP32} + ${OPCODER_SRC_INT8} ) add_executable(codegen main.cc diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/activation_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/activation_fp32_coder.cc new file mode 100644 index 00000000000..c593aa25ef8 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/activation_fp32_coder.cc @@ -0,0 +1,71 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "micro/coder/opcoders/nnacl/fp32/activation_fp32_coder.h" +#include +#include "nnacl/fp32/activation_fp32.h" +#include "nnacl/op_base.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Activation; + +namespace mindspore::lite::micro { + +int ActivationFP32Coder::DoCode(CoderContext *const context) { + // attribute + auto *activation_parameter = reinterpret_cast(parameter_); + int task_id = 0; + int length = input_tensor_->ElementsNum(); + MS_CHECK_TRUE(thread_num_ > 0, "thread_num_ <= 0"); + int stride = UP_DIV(length, thread_num_); + int count = MSMIN(stride, length - stride * task_id); + + if (activation_parameter->type_ == schema::ActivationType_SIGMOID) { + Collect(context, {"runtime/kernel/fp32/sigmoid.h"}, {"sigmoid.c"}); + } else { + Collect(context, {"nnacl/fp32/activation.h"}, {"activation.c"}); + } + nnacl::NNaclFp32Serializer code; + switch (activation_parameter->type_) { + case schema::ActivationType_RELU: + code.CodeFunction("Fp32Relu", input_tensor_, count, output_tensor_); + break; + case schema::ActivationType_RELU6: + code.CodeFunction("Fp32Relu6", input_tensor_, count, output_tensor_); + break; + case schema::ActivationType_LEAKY_RELU: + code.CodeFunction("LRelu", input_tensor_, count, output_tensor_, activation_parameter->alpha_); + break; + case schema::ActivationType_SIGMOID: + code.CodeFunction("Sigmoid", input_tensor_, count, output_tensor_); + break; + case schema::ActivationType_TANH: + code.CodeFunction("Tanh", input_tensor_, count, output_tensor_); + break; + case schema::ActivationType_HSWISH: + code.CodeFunction("HSwish", input_tensor_, count, output_tensor_); + break; + default: + MS_LOG(ERROR) << "Activation type error"; + return RET_ERROR; + } + MS_LOG(DEBUG) << "ActivationFP32Code has been called"; + context->AppendCode(code.str()); + return lite::RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Activation, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/activation_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/activation_fp32_coder.h new file mode 100644 index 00000000000..da8876af4d8 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/activation_fp32_coder.h @@ -0,0 +1,40 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MICRO_CODER_OPCODERS_FP32_ACTIVATIONFP32_CODER_H_ +#define MICRO_CODER_OPCODERS_FP32_ACTIVATIONFP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" + +namespace mindspore::lite::micro { + +class ActivationFP32Coder final : public OperatorCoder { + public: + ActivationFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~ActivationFP32Coder() override = default; + + int Prepare(CoderContext *const context) override { return RET_OK; } + + int DoCode(CoderContext *const context) override; +}; + +} // namespace mindspore::lite::micro + +#endif // MICRO_CODER_OPCODERS_FP32__CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/addn_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/addn_fp32_coder.cc new file mode 100644 index 00000000000..9a0061805bf --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/addn_fp32_coder.cc @@ -0,0 +1,48 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/addn_fp32_coder.h" +#include +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_AddN; +namespace mindspore::lite::micro { + +int AddNFP32Coder::DoCode(CoderContext *const context) { + Tensor *input0 = input_tensors_.at(kInputIndex); + Tensor *input1 = input_tensors_.at(1); + int elements_num = input0->ElementsNum(); + + // Get Tensor Pointer + std::string input0_str = allocator_->GetRuntimeAddr(input0); + std::string input1_str = allocator_->GetRuntimeAddr(input1); + Collect(context, {"nnacl/kernel/fp32/add_fp32_slim.h"}, {"add_fp32_slim.c"}); + nnacl::NNaclFp32Serializer code; + code.CodeFunction("ElementAdd", input0_str, input1_str, output_tensor_, elements_num); + if (input_tensors_.size() > 2) { + for (size_t i = 2; i < input_tensors_.size(); ++i) { + std::string input_str = allocator_->GetRuntimeAddr(input_tensors_.at(i)); + code.CodeFunction("ElementAdd", input_str, output_tensor_, elements_num); + } + } + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_AddN, CPUOpCoderCreator) + +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/addn_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/addn_fp32_coder.h new file mode 100644 index 00000000000..58bdf9aa92d --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/addn_fp32_coder.h @@ -0,0 +1,36 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_ADDN_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_ADDN_FP32_CODER_H_ +#include +#include "micro/coder/opcoders/op_coder.h" + +namespace mindspore::lite::micro { +class AddNFP32Coder : public OperatorCoder { + public: + AddNFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~AddNFP32Coder() override = default; + + int Prepare(CoderContext *const context) override { return RET_OK; } + + int DoCode(CoderContext *const context) override; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_ADDN_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_fp32_coder.cc new file mode 100644 index 00000000000..d0314bf5b22 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_fp32_coder.cc @@ -0,0 +1,373 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "micro/coder/opcoders/nnacl/fp32/arithmetic_fp32_coder.h" +#include +#include +#include +#include "micro/coder/opcoders/file_collector.h" +#include "nnacl/fp32/arithmetic_fp32.h" +#include "micro/coder/log.h" + +namespace mindspore::lite::micro { + +int ArithmeticFP32Coder::Init(CoderContext *const context) { + filter_tensor_ = input_tensors_.at(kWeightIndex); + MS_CHECK_PTR(filter_tensor_); + if (input_tensor_->data_type() == kNumberTypeFloat32 || input_tensor_->data_type() == kNumberTypeFloat16) { + data_type_ = kDataTypeFloat; + } else { + data_type_ = kDataTypeInt; + } + arithmetic_parameter_->in_elements_num0_ = input_tensor_->ElementsNum(); + arithmetic_parameter_->in_elements_num1_ = filter_tensor_->ElementsNum(); + arithmetic_parameter_->out_elements_num_ = output_tensor_->ElementsNum(); + for (size_t i = 0; i < input_tensor_->shape().size(); i++) { + if (arithmetic_parameter_->in_shape0_[i] == -1) { + MS_CHECK_RET_CODE( + memcpy_s(arithmetic_parameter_->in_shape0_, DEFAULT_ARITHMETIC_NDIMS * sizeof(int), + static_cast(input_tensor_->shape().data()), input_tensor_->shape().size() * sizeof(int)), + "memcpy_s in shape0 failed!"); + } + } + for (size_t i = 0; i < filter_tensor_->shape().size(); i++) { + if (arithmetic_parameter_->in_shape1_[i] == -1) { + MS_CHECK_RET_CODE( + memcpy_s(arithmetic_parameter_->in_shape1_, DEFAULT_ARITHMETIC_NDIMS * sizeof(int), + static_cast(filter_tensor_->shape().data()), filter_tensor_->shape().size() * sizeof(int)), + "memcpy_s in shape1 failed!"); + } + } + for (size_t i = 0; i < output_tensor_->shape().size(); i++) { + if (arithmetic_parameter_->out_shape_[i] == -1) { + MS_CHECK_RET_CODE( + memcpy_s(arithmetic_parameter_->out_shape_, DEFAULT_ARITHMETIC_NDIMS * sizeof(int), + static_cast(output_tensor_->shape().data()), output_tensor_->shape().size() * sizeof(int)), + "memcpy_s in out shape failed!"); + } + } + + if (arithmetic_parameter_->in_elements_num0_ == 1 || arithmetic_parameter_->in_elements_num1_ == 1) { + switch (arithmetic_parameter_->op_parameter_.type_) { + case PrimitiveType_Mul: + switch (arithmetic_parameter_->activation_type_) { + case schema::ActivationType_RELU: + arithmetic_parameter_->broadcasting_ = false; + arithmetic_opt_run_ = "ElementOptMulRelu"; + arithmetic_opt_run_int_ = "ElementOptMulReluInt"; + break; + case schema::ActivationType_RELU6: + arithmetic_parameter_->broadcasting_ = false; + arithmetic_opt_run_ = "ElementOptMulRelu6"; + arithmetic_opt_run_int_ = "ElementOptMulRelu6Int"; + break; + default: + arithmetic_parameter_->broadcasting_ = false; + arithmetic_opt_run_ = "ElementOptMul"; + arithmetic_opt_run_int_ = "ElementOptMulInt"; + break; + } + break; + case PrimitiveType_Add: + switch (arithmetic_parameter_->activation_type_) { + case schema::ActivationType_RELU: + arithmetic_parameter_->broadcasting_ = false; + arithmetic_opt_run_ = "ElementOptAddRelu"; + arithmetic_opt_run_int_ = "ElementOptAddReluInt"; + break; + case schema::ActivationType_RELU6: + arithmetic_parameter_->broadcasting_ = false; + arithmetic_opt_run_ = "ElementOptAddRelu6"; + arithmetic_opt_run_int_ = "ElementOptAddRelu6Int"; + break; + default: + arithmetic_parameter_->broadcasting_ = false; + arithmetic_opt_run_ = "ElementOptAdd"; + arithmetic_opt_run_int_ = "ElementOptAddInt"; + break; + } + break; + case PrimitiveType_Sub: + switch (arithmetic_parameter_->activation_type_) { + case schema::ActivationType_RELU: + arithmetic_parameter_->broadcasting_ = false; + arithmetic_opt_run_ = "ElementOptSubRelu"; + break; + case schema::ActivationType_RELU6: + arithmetic_parameter_->broadcasting_ = false; + arithmetic_opt_run_ = "ElementOptSubRelu6"; + break; + default: + arithmetic_parameter_->broadcasting_ = false; + arithmetic_opt_run_ = "ElementOptSub"; + break; + } + break; + default: + break; + } + } + return RET_OK; +} + +int ArithmeticFP32Coder::BroadcastRun(const std::string &input0, const std::string &input1, const std::string &output, + int dim, int out_count, int out_thread_stride, + nnacl::NNaclFp32Serializer *const code) { + if (dim > break_pos_) { + if (data_type_ == kDataTypeInt) { + *code << "\t\t" << arithmetic_run_int_ << "(((" << input0 << ") + " << out_thread_stride << "), ((" << input1 + << ") + " << out_thread_stride << "), ((" << output << ") + " << out_thread_stride << "), " << out_count + << ");\n"; + + } else { + *code << "\t\t" << arithmetic_run_ << "(((" << input0 << ") + " << out_thread_stride << "), ((" << input1 + << ") + " << out_thread_stride << "), ((" << output << ") + " << out_thread_stride << "), " << out_count + << ");\n"; + } + return RET_OK; + } + for (int i = 0; i < arithmetic_parameter_->out_shape_[dim]; ++i) { + int pos0_ = arithmetic_parameter_->in_shape0_[dim] == 1 ? 0 : i; + int pos1_ = arithmetic_parameter_->in_shape1_[dim] == 1 ? 0 : i; + int error_code = BroadcastRun(input0 + "+" + std::to_string(pos0_ * arithmetic_parameter_->in_strides0_[dim]), + input1 + "+" + std::to_string(pos1_ * arithmetic_parameter_->in_strides1_[dim]), + output + "+" + std::to_string(i * arithmetic_parameter_->out_strides_[dim]), dim + 1, + out_count, out_thread_stride, code); + if (error_code != RET_OK) { + return error_code; + } + } + return RET_OK; +} + +int ArithmeticFP32Coder::Prepare(CoderContext *const context) { + if (parameter_ == nullptr) { + return RET_ERROR; + } + arithmetic_parameter_ = reinterpret_cast(parameter_); + std::map> type_setters = { + {PrimitiveType_Mul, + [this]() { + switch (arithmetic_parameter_->activation_type_) { + case schema::ActivationType_RELU: + arithmetic_run_ = "ElementMulRelu"; + arithmetic_run_int_ = "ElementMulReluInt"; + break; + case schema::ActivationType_RELU6: + arithmetic_run_ = "ElementMulRelu6"; + arithmetic_run_int_ = "ElementMulRelu6Int"; + break; + default: + arithmetic_run_ = "ElementMul"; + arithmetic_run_int_ = "ElementMulInt"; + break; + } + }}, + {PrimitiveType_Add, + [this]() { + switch (arithmetic_parameter_->activation_type_) { + case schema::ActivationType_RELU: + arithmetic_run_ = "ElementAddRelu"; + arithmetic_run_int_ = "ElementAddReluInt"; + break; + case schema::ActivationType_RELU6: + arithmetic_run_ = "ElementAddRelu6"; + arithmetic_run_int_ = "ElementAddRelu6Int"; + break; + default: + arithmetic_run_ = "ElementAdd"; + arithmetic_run_int_ = "ElementAddInt"; + break; + } + }}, + {PrimitiveType_Sub, + [this]() { + switch (arithmetic_parameter_->activation_type_) { + case schema::ActivationType_RELU: + arithmetic_run_ = "ElementSubRelu"; + break; + case schema::ActivationType_RELU6: + arithmetic_run_ = "ElementSubRelu6"; + break; + default: + arithmetic_run_ = "ElementSub"; + break; + } + }}, + {PrimitiveType_Div, + [this]() { + switch (arithmetic_parameter_->activation_type_) { + case schema::ActivationType_RELU: + arithmetic_run_ = "ElementDivRelu"; + break; + case schema::ActivationType_RELU6: + arithmetic_run_ = "ElementDivRelu6"; + break; + default: + arithmetic_run_ = "ElementDiv"; + break; + } + }}, + {PrimitiveType_LogicalAnd, [this]() { arithmetic_run_ = "ElementLogicalAnd"; }}, + {PrimitiveType_LogicalOr, [this]() { arithmetic_run_ = "ElementLogicalOr"; }}, + {PrimitiveType_Maximum, [this]() { arithmetic_run_ = "ElementMaximum"; }}, + {PrimitiveType_Minimum, [this]() { arithmetic_run_ = "ElementMinimum"; }}, + {PrimitiveType_FloorDiv, [this]() { arithmetic_run_ = "ElementFloorDiv"; }}, + {PrimitiveType_FloorMod, [this]() { arithmetic_run_ = "ElementFloorMod"; }}, + {PrimitiveType_Equal, [this]() { arithmetic_run_ = "ElementEqual"; }}, + {PrimitiveType_NotEqual, [this]() { arithmetic_run_ = "ElementNotEqual"; }}, + {PrimitiveType_Less, [this]() { arithmetic_run_ = "ElementLess"; }}, + {PrimitiveType_LessEqual, [this]() { arithmetic_run_ = "ElementLessEqual"; }}, + {PrimitiveType_Greater, [this]() { arithmetic_run_ = "ElementGreater"; }}, + {PrimitiveType_GreaterEqual, [this]() { arithmetic_run_ = "ElementGreaterEqual"; }}, + {PrimitiveType_SquaredDifference, [this]() { arithmetic_run_ = "ElementSquaredDifference"; }}, + }; + auto iter = type_setters.find(parameter_->type_); + if (iter != type_setters.end()) { + iter->second(); + } else { + MS_LOG(ERROR) << "Error Operator type " << parameter_; + arithmetic_run_ = "NULL"; + return RET_ERROR; + } + MS_CHECK_RET_CODE(Init(context), "do arothmetic code failed!"); + return RET_OK; +} + +int ArithmeticFP32Coder::DoCode(CoderContext *const context) { + int task_id = 0; + if (arithmetic_parameter_->broadcasting_) { + outside_ = 1; + for (auto i = arithmetic_parameter_->ndim_ - 1; i >= 0; --i) { + if (arithmetic_parameter_->in_shape0_[i] != arithmetic_parameter_->in_shape1_[i]) { + break_pos_ = i; + break; + } + outside_ *= arithmetic_parameter_->out_shape_[i]; + } + ComputeStrides(arithmetic_parameter_->in_shape0_, arithmetic_parameter_->in_strides0_, + arithmetic_parameter_->ndim_); + ComputeStrides(arithmetic_parameter_->in_shape1_, arithmetic_parameter_->in_strides1_, + arithmetic_parameter_->ndim_); + ComputeStrides(arithmetic_parameter_->out_shape_, arithmetic_parameter_->out_strides_, + arithmetic_parameter_->ndim_); + } + + int element_num = output_tensor_->ElementsNum(); + MS_CHECK_TRUE(thread_num_ > 0, "thread_num_ <= 0"); + int stride = UP_DIV(element_num, thread_num_); + int count = MSMIN(stride, element_num - stride * task_id); + MS_CHECK_TRUE(!arithmetic_run_.empty(), "arithmetic_run function is nullptr!"); + nnacl::NNaclFp32Serializer code; + /** + * for nnacl's operator combine all arithmetic to nnalc/arithmetic.c + * this solution is not suitable for micro, for the size of package. + * */ + if (arithmetic_opt_run_ == "ElementOptSub" || arithmetic_run_ == "ElementSub") { + Collect(context, {"nnacl/kernel/fp32/sub.h"}, {"sub.c"}); + } else if (arithmetic_opt_run_ == "ElementOptAdd" || arithmetic_run_ == "ElementAdd") { + Collect(context, {"nnacl/kernel/fp32/add_fp32_slim.h"}, {"add_fp32_slim.c"}); + } else if (arithmetic_opt_run_ == "ElementOptMul" || arithmetic_run_ == "ElementMul") { + Collect(context, {"nnacl/kernel/fp32/mul.h"}, {"mul.c"}); + } else if (arithmetic_run_ == "ElementAddRelu") { + Collect(context, {"nnacl/kernel/fp32/add_relu.h"}, {"add_relu.c"}); + } else { + Collect(context, {"nnacl/arithmetic_common.h", "nnacl/fp32/arithmetic.h"}, {"arithmetic_common.c", "arithmetic.c"}); + } + + if (arithmetic_parameter_->broadcasting_) { + stride = UP_DIV(outside_, thread_num_); + out_count_ = MSMIN(stride, outside_ - stride * task_id); + out_thread_stride_ = stride * task_id; + std::string input0_str = allocator_->GetRuntimeAddr(input_tensor_); + std::string input1_str = allocator_->GetRuntimeAddr(filter_tensor_); + std::string output_str = allocator_->GetRuntimeAddr(output_tensor_); + MS_CHECK_RET_CODE(BroadcastRun(input0_str, input1_str, output_str, 0, out_count_, out_thread_stride_, &code), + "do broad cast code failed!"); + } else if (!arithmetic_opt_run_.empty()) { + code.CodeStruct("arithmetic_parameter", *arithmetic_parameter_); + if (arithmetic_parameter_->in_elements_num0_ == 1) { + if (data_type_ == kDataTypeFloat) { + code.CodeFunction(arithmetic_opt_run_, input_tensor_, filter_tensor_, output_tensor_, count, + "&arithmetic_parameter"); + } else { + code.CodeFunction(arithmetic_opt_run_int_, input_tensor_, filter_tensor_, output_tensor_, count, + "&arithmetic_parameter"); + } + } else if (arithmetic_parameter_->in_elements_num1_ == 1) { + if (data_type_ == kDataTypeFloat) { + code.CodeFunction(arithmetic_opt_run_, input_tensor_, filter_tensor_, output_tensor_, count, + "&arithmetic_parameter"); + } else { + code.CodeFunction(arithmetic_opt_run_int_, input_tensor_, filter_tensor_, output_tensor_, count, + "&arithmetic_parameter"); + } + } else { + MS_LOG(ERROR) << "arithmetic opt code run: at least one of inputs is scalar"; + return RET_ERROR; + } + } else { + if (data_type_ == kDataTypeFloat) { + code.CodeFunction(arithmetic_run_, input_tensor_, filter_tensor_, output_tensor_, count); + } else { + code.CodeFunction(arithmetic_run_int_, input_tensor_, filter_tensor_, output_tensor_, count); + } + } + MS_LOG(DEBUG) << "ArithmeticFP32Code has been called"; + context->AppendCode(code.str()); + + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeInt32, PrimitiveType_Add, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Mul, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Add, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Sub, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Div, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_LogicalAnd, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_LogicalOr, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Maximum, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Minimum, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_FloorDiv, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_FloorMod, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_SquaredDifference, + CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Equal, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_NotEqual, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Less, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_LessEqual, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Greater, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_GreaterEqual, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Eltwise, CPUOpCoderCreator) + +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_fp32_coder.h new file mode 100644 index 00000000000..afbbefe762a --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_fp32_coder.h @@ -0,0 +1,109 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MICRO_CODER_OPCODERS_FP32_ARITHMETIC_FP32_CODER_H_ +#define MICRO_CODER_OPCODERS_FP32_ARITHMETIC_FP32_CODER_H_ + +#include +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/fp32/arithmetic_fp32.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#define DEFAULT_ARITHMETIC_NDIMS 10 +namespace mindspore::lite::micro { + +using mindspore::schema::PrimitiveType_Add; + +using mindspore::schema::PrimitiveType_Div; + +using mindspore::schema::PrimitiveType_Equal; + +using mindspore::schema::PrimitiveType_FloorDiv; + +using mindspore::schema::PrimitiveType_FloorMod; + +using mindspore::schema::PrimitiveType_Greater; + +using mindspore::schema::PrimitiveType_GreaterEqual; + +using mindspore::schema::PrimitiveType_Less; + +using mindspore::schema::PrimitiveType_LessEqual; + +using mindspore::schema::PrimitiveType_LogicalAnd; + +using mindspore::schema::PrimitiveType_LogicalOr; + +using mindspore::schema::PrimitiveType_Maximum; + +using mindspore::schema::PrimitiveType_Minimum; + +using mindspore::schema::PrimitiveType_Mul; + +using mindspore::schema::PrimitiveType_NotEqual; + +using mindspore::schema::PrimitiveType_RealDiv; + +using mindspore::schema::PrimitiveType_SquaredDifference; + +using mindspore::schema::PrimitiveType_Sub; + +using mindspore::schema::PrimitiveType_Eltwise; + +using mindspore::schema::PrimitiveType_Minimum; + +class ArithmeticFP32Coder final : public OperatorCoder { + public: + ArithmeticFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~ArithmeticFP32Coder() override = default; + + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; + + private: + int Init(CoderContext *const context); + + int BroadcastRun(const std::string &input0, const std::string &input1, const std::string &output, int dim, + int out_count, int out_thread_stride, nnacl::NNaclFp32Serializer *const code); + + int break_pos_{0}; + + int outside_{0}; + + int out_thread_stride_{0}; + + int out_count_{0}; + + ArithmeticParameter *arithmetic_parameter_{nullptr}; + + Tensor *filter_tensor_{nullptr}; + + std::string arithmetic_run_; + + std::string arithmetic_run_int_; + + std::string arithmetic_opt_run_; + + std::string arithmetic_opt_run_int_; + + LiteDataType data_type_{kDataTypeFloat}; +}; +} // namespace mindspore::lite::micro +#endif // MICRO_CODER_OPCODERS_FP32_ARITHMETIC_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_self_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_self_fp32_coder.cc new file mode 100644 index 00000000000..76b739d2052 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_self_fp32_coder.cc @@ -0,0 +1,104 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/arithmetic_self_fp32_coder.h" +#include +#include +#include "nnacl/fp32/arithmetic_fp32.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +namespace mindspore::lite::micro { + +int ArithmeticSelfFP32Coder::ReSize() { + data_size_ = input_tensor_->ElementsNum(); + thread_sz_count_ = MSMIN(thread_num_, static_cast(data_size_)); + MS_CHECK_TRUE(thread_sz_count_ > 0, "thread_sz_count_ <= 0"); + thread_sz_stride_ = UP_DIV(data_size_, thread_sz_count_); + return RET_OK; +} + +int ArithmeticSelfFP32Coder::Prepare(CoderContext *const context) { + if (parameter_ == nullptr) { + return RET_ERROR; + } + std::map> type_setters = { + {PrimitiveType_Abs, [this]() { arithmetic_self_run_ = "ElementAbs"; }}, + {PrimitiveType_Cos, [this]() { arithmetic_self_run_ = "ElementCos"; }}, + {PrimitiveType_Log, [this]() { arithmetic_self_run_ = "ElementLog"; }}, + {PrimitiveType_Square, [this]() { arithmetic_self_run_ = "ElementSquare"; }}, + {PrimitiveType_Sqrt, [this]() { arithmetic_self_run_ = "ElementSqrt"; }}, + {PrimitiveType_Rsqrt, [this]() { arithmetic_self_run_ = "ElementRsqrt"; }}, + {PrimitiveType_Sin, [this]() { arithmetic_self_run_ = "ElementSin"; }}, + {PrimitiveType_LogicalNot, [this]() { arithmetic_self_run_ = "ElementLogicalNot"; }}, + {PrimitiveType_Floor, [this]() { arithmetic_self_run_ = "ElementFloor"; }}, + {PrimitiveType_Ceil, [this]() { arithmetic_self_run_ = "ElementCeil"; }}, + {PrimitiveType_Round, [this]() { arithmetic_self_run_ = "ElementRound"; }}, + {PrimitiveType_Neg, [this]() { arithmetic_self_run_ = "ElementNegative"; }}, + }; + auto iter = type_setters.find(parameter_->type_); + if (iter != type_setters.end()) { + iter->second(); + } else { + MS_LOG(ERROR) << "Error Operator type " << parameter_; + return RET_ERROR; + } + MS_CHECK_RET_CODE(ReSize(), "ReSize failed"); + return RET_OK; +} + +int ArithmeticSelfFP32Coder::DoCode(CoderContext *const context) { + int task_id = 0; + int size = MSMIN(thread_sz_stride_, static_cast(data_size_ - task_id * thread_sz_stride_)); + + MS_CHECK_TRUE(!arithmetic_self_run_.empty(), "arithmetic_run function is nullptr!"); + + Collect(context, {"nnacl/arithmetic_common.h", "nnacl/fp32/arithmetic_self.h"}, {"nnacl/fp32/arithmetic_self.c"}); + nnacl::NNaclFp32Serializer code; + code.CodeFunction(arithmetic_self_run_, input_tensor_, output_tensor_, size); + + MS_LOG(DEBUG) << "ArithmeticSelfFP32Coder has been called"; + context->AppendCode(code.str()); + + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Abs, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Cos, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Log, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Square, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Sqrt, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Rsqrt, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Sin, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_LogicalNot, + CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Floor, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Ceil, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Round, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Neg, CPUOpCoderCreator) + +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_self_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_self_fp32_coder.h new file mode 100644 index 00000000000..a34b898965b --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/arithmetic_self_fp32_coder.h @@ -0,0 +1,109 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MICRO_CODER_OPCODERS_FP32_ARITHMETIC_SELF_FP32_CODER_H_ +#define MICRO_CODER_OPCODERS_FP32_ARITHMETIC_SELF_FP32_CODER_H_ + +#include +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/fp32/arithmetic_self_fp32.h" +#include "nnacl/arithmetic_self_parameter.h" + +namespace mindspore::lite::micro { + +using mindspore::schema::PrimitiveType_Abs; + +using mindspore::schema::PrimitiveType_Add; + +using mindspore::schema::PrimitiveType_AddN; + +using mindspore::schema::PrimitiveType_Neg; + +using mindspore::schema::PrimitiveType_Ceil; + +using mindspore::schema::PrimitiveType_Cos; + +using mindspore::schema::PrimitiveType_Div; + +using mindspore::schema::PrimitiveType_Equal; + +using mindspore::schema::PrimitiveType_Floor; + +using mindspore::schema::PrimitiveType_FloorDiv; + +using mindspore::schema::PrimitiveType_FloorMod; + +using mindspore::schema::PrimitiveType_Greater; + +using mindspore::schema::PrimitiveType_GreaterEqual; + +using mindspore::schema::PrimitiveType_Less; + +using mindspore::schema::PrimitiveType_LessEqual; + +using mindspore::schema::PrimitiveType_Log; + +using mindspore::schema::PrimitiveType_LogicalAnd; + +using mindspore::schema::PrimitiveType_LogicalOr; + +using mindspore::schema::PrimitiveType_LogicalNot; + +using mindspore::schema::PrimitiveType_Maximum; + +using mindspore::schema::PrimitiveType_Minimum; + +using mindspore::schema::PrimitiveType_Mul; + +using mindspore::schema::PrimitiveType_NotEqual; + +using mindspore::schema::PrimitiveType_RealDiv; + +using mindspore::schema::PrimitiveType_Round; + +using mindspore::schema::PrimitiveType_Rsqrt; + +using mindspore::schema::PrimitiveType_Sqrt; + +using mindspore::schema::PrimitiveType_SquaredDifference; + +using mindspore::schema::PrimitiveType_Sub; + +using mindspore::schema::PrimitiveType_Sin; + +using mindspore::schema::PrimitiveType_Square; + +class ArithmeticSelfFP32Coder final : public OperatorCoder { + public: + ArithmeticSelfFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + int Prepare(CoderContext *const context) override; + int DoCode(CoderContext *const context) override; + ~ArithmeticSelfFP32Coder() override = default; + + private: + int ReSize(); + + private: + int thread_sz_count_{0}; + int thread_sz_stride_{0}; + size_t data_size_{0}; + std::string arithmetic_self_run_; +}; +} // namespace mindspore::lite::micro +#endif // MICRO_CODER_OPCODERS_FP32_ARITHMETIC_SELF_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/assign_add_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/assign_add_fp32_coder.cc new file mode 100644 index 00000000000..f993056ba24 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/assign_add_fp32_coder.cc @@ -0,0 +1,55 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/assign_add_fp32_coder.h" +#include +#include "schema/inner/ops_generated.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" + +namespace mindspore::lite::micro { + +using mindspore::schema::PrimitiveType_AssignAdd; + +int AssignAddFP32Coder::Prepare(CoderContext *const context) { return RET_OK; } + +int AssignAddFP32Coder::DoCode(CoderContext *const context) { + MS_CHECK_TRUE(input_tensors_.size() == 2, "inputs size is not equal to two"); + Tensor *input0 = input_tensors_.at(0); + Tensor *input1 = input_tensors_.at(1); + if (input0->Size() != input1->Size()) { + MS_LOG(ERROR) << "input0 size: " << input0->Size() << ", input1 size: " << input1->Size(); + return RET_ERROR; + } + + nnacl::NNaclFp32Serializer code; + // Get Tensor Pointer + std::string input0_str = allocator_->GetRuntimeAddr(input0); + std::string input1_str = allocator_->GetRuntimeAddr(input1); + size_t data_size = input0->Size(); + // assign add, just add input1'data to input0 + code << "\t\tfor (int i = 0; i < " << data_size << "; ++i) {\n"; + code << "\t\t\t(" << input0_str << ")[i] += (" << input1_str << ")[i];\n"; + code << "\t\t}\n"; + code.CodeFunction("memcpy", output_tensor_, input0_str, data_size); + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_AssignAdd, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeInt32, PrimitiveType_AssignAdd, CPUOpCoderCreator) + +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/assign_add_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/assign_add_fp32_coder.h new file mode 100644 index 00000000000..1f7deac0d1a --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/assign_add_fp32_coder.h @@ -0,0 +1,37 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_ASSIGN_ADD_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_ASSIGN_ADD_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/base/tile_base.h" + +namespace mindspore::lite::micro { +class AssignAddFP32Coder : public OperatorCoder { + public: + AssignAddFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + ~AssignAddFP32Coder() override = default; + + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_ASSIGN_ADD_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/batchnorm_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/batchnorm_fp32_coder.cc new file mode 100644 index 00000000000..1b4523e3982 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/batchnorm_fp32_coder.cc @@ -0,0 +1,69 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "micro/coder/opcoders/nnacl/fp32/batchnorm_fp32_coder.h" +#include +#include +#include "nnacl/fp32/batchnorm_fp32.h" +#include "src/ops/batch_norm.h" +#include "nnacl/op_base.h" +#include "micro/coder/opcoders/file_collector.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" + +using mindspore::schema::PrimitiveType_BatchNorm; + +namespace mindspore::lite::micro { + +int BatchnormFP32Coder::Init() { + auto bn_parameter = reinterpret_cast(parameter_); + auto bn_prim = reinterpret_cast(OperatorCoder::primitive()); + bn_parameter->epsilon_ = bn_prim->GetEpsilon(); + + std::vector input_shapes = input_tensor_->shape(); + if (input_shapes.empty()) { + return RET_ERROR; + } + int n_dim = static_cast(input_shapes.size()); + bn_parameter->channel_ = input_shapes.at(n_dim - 1); + bn_parameter->unit_ = 1; + for (int i = 0; i < n_dim - 1; i++) { + bn_parameter->unit_ *= input_shapes.at(i); + } + bn_parameter->op_parameter_.thread_num_ = MSMIN(bn_parameter->op_parameter_.thread_num_, bn_parameter->unit_); + return RET_OK; +} + +int BatchnormFP32Coder::DoCode(CoderContext *const context) { + // attribute + int task_id = 0; + auto bn_parameter = reinterpret_cast(parameter_); + if (Init() != RET_OK) { + MS_LOG(ERROR) << "BatchnormFP32Coder Init error"; + return RET_ERROR; + } + MS_CHECK_TRUE(input_tensors_.size() == 3, "inputs size is not equal to three"); + Tensor *mean_tensor = input_tensors_.at(1); + Tensor *var_tensor = input_tensors_.at(2); + Collect(context, {"nnacl/fp32/batchnorm.h"}, {"nnacl/fp32/batchnorm.c"}); + nnacl::NNaclFp32Serializer code; + code.CodeStruct("bn_parameter", *bn_parameter); + code.CodeFunction("BatchNorm", output_tensor_, input_tensor_, mean_tensor, var_tensor, task_id, "&bn_parameter"); + MS_LOG(INFO) << "BatchnormFP32Code has been called"; + context->AppendCode(code.str()); + return lite::RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_BatchNorm, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/batchnorm_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/batchnorm_fp32_coder.h new file mode 100644 index 00000000000..b69499360e7 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/batchnorm_fp32_coder.h @@ -0,0 +1,43 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MICRO_CODER_OPCODERS_FP32_BATCHNORM_FP32_CODER_H_ +#define MICRO_CODER_OPCODERS_FP32_BATCHNORM_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" + +namespace mindspore::lite::micro { + +class BatchnormFP32Coder final : public OperatorCoder { + public: + BatchnormFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~BatchnormFP32Coder() override = default; + + int Prepare(CoderContext *const context) override { return RET_OK; } + + int DoCode(CoderContext *const context) override; + + private: + int Init(); +}; + +} // namespace mindspore::lite::micro + +#endif // MICRO_CODER_OPCODERS_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/concat_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/concat_fp32_coder.cc new file mode 100644 index 00000000000..5d6b438f078 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/concat_fp32_coder.cc @@ -0,0 +1,77 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "micro/coder/opcoders/nnacl/fp32/concat_fp32_coder.h" +#include +#include +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Concat; + +namespace mindspore::lite::micro { + +int ConcatFP32Coder::Prepare(CoderContext *const context) { + concat_param_ = reinterpret_cast(parameter_); + return ReSize(); +} + +int ConcatFP32Coder::ReSize() { + axis_ = concat_param_->axis_ >= 0 ? concat_param_->axis_ + : static_cast(input_tensor_->shape().size()) + concat_param_->axis_; + return RET_OK; +} + +int ConcatFP32Coder::DoCode(CoderContext *const context) { + Collect(context, {"nnacl/fp32/concat.h"}, {"nnacl/fp32/concat.c"}); + + size_t input_num = input_tensors_.size(); + + nnacl::NNaclFp32Serializer code; + code << "\t\tvoid *inputs_addr[] = {"; + for (size_t i = 0; i < input_num; ++i) { + code << allocator_->GetRuntimeAddr(input_tensors_.at(i)) << ", "; + } + code << "};\n"; + + size_t i; + for (i = 0; i < input_num; ++i) { + code << "\t\tint shape_" << i << "[] = {"; + for (auto &shape : input_tensors_.at(i)->shape()) { + code << shape << ", "; + } + code << "};\n"; + } + + code << "\t\tint shape_" << i << "[] = {"; + for (auto &shape : output_tensor_->shape()) { + code << shape << ", "; + } + code << "};\n"; + + code << "\t\tint *inputs_output_shape[] = {"; + for (i = 0; i <= input_num; ++i) { + code << "shape_" << i << ", "; + } + code << "};\n"; + + code.CodeFunction("Concat", "inputs_addr", input_num, axis_, "inputs_output_shape", output_tensor_->shape().size(), + output_tensor_, 0, thread_num_); + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Concat, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/concat_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/concat_fp32_coder.h new file mode 100644 index 00000000000..b922c304c59 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/concat_fp32_coder.h @@ -0,0 +1,42 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_CONCAT_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_CONCAT_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/concat_parameter.h" + +namespace mindspore::lite::micro { +class ConcatFP32Coder : public OperatorCoder { + public: + ConcatFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + ~ConcatFP32Coder() override = default; + + int Prepare(CoderContext *const context) override; + int DoCode(CoderContext *const context) override; + + private: + int ReSize(); + + int axis_{0}; + ConcatParameter *concat_param_{nullptr}; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_CONCAT_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/expand_dims_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/expand_dims_fp32_coder.cc new file mode 100644 index 00000000000..2eed3d2decc --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/expand_dims_fp32_coder.cc @@ -0,0 +1,52 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/expand_dims_fp32_coder.h" +#include +#include "micro/coder/opcoders/file_collector.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" + +using mindspore::schema::PrimitiveType_ExpandDims; + +namespace mindspore::lite::micro { +int ExpandDimsFP32Coder::Prepare(CoderContext *const context) { return ReSize(); } + +int ExpandDimsFP32Coder::ReSize() { + data_size_ = input_tensor_->ElementsNum(); + thread_sz_count_ = MSMIN(thread_num_, static_cast(data_size_)); + MS_CHECK_TRUE(thread_sz_count_ > 0, "thread_sz_count_ is less or equal to 0"); + thread_sz_stride_ = UP_DIV(data_size_, thread_sz_count_); + return RET_OK; +} + +int ExpandDimsFP32Coder::DoCode(CoderContext *const context) { + // generate code .h .c + Collect(context, {"nnacl/fp32/expandDims.h"}, {"nnacl/fp32/expandDims.c"}); + nnacl::NNaclFp32Serializer code; + int task_id = 0; + size_t size = MSMIN(thread_sz_stride_, static_cast(data_size_ - task_id * thread_sz_stride_)); + if (!size) { + return RET_OK; + } + code.CodeFunction("ExpandDims", input_tensor_, output_tensor_, size * sizeof(float)); + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_ExpandDims, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeInt32, PrimitiveType_ExpandDims, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/expand_dims_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/expand_dims_fp32_coder.h new file mode 100644 index 00000000000..aeb91d8c581 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/expand_dims_fp32_coder.h @@ -0,0 +1,42 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_EXPANDDIMS_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_EXPANDDIMS_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" + +namespace mindspore::lite::micro { +class ExpandDimsFP32Coder : public OperatorCoder { + public: + ExpandDimsFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~ExpandDimsFP32Coder() override = default; + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; + + private: + int ReSize(); + int thread_sz_count_{0}; + int thread_sz_stride_{0}; + size_t data_size_{0}; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_EXPANDDIMS_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/gather_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/gather_fp32_coder.cc new file mode 100644 index 00000000000..5baf947522c --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/gather_fp32_coder.cc @@ -0,0 +1,69 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/gather_fp32_coder.h" +#include +#include "nnacl/gather_parameter.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/log.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Gather; + +namespace mindspore::lite::micro { + +int GatherFP32Coder::Prepare(CoderContext *const context) { return RET_OK; } + +int GatherFP32Coder::DoCode(CoderContext *context) { + Tensor *input0 = input_tensors_.at(0); + Tensor *input1 = input_tensors_.at(1); + + // generate code .h .c + Collect(context, {"nnacl/fp32/gather.h"}, {"nnacl/fp32/gather.c"}); + + nnacl::NNaclFp32Serializer code; + std::vector in_shape = input0->shape(); + int in_rank = in_shape.size(); + int indices_element_size = input1->ElementsNum(); + int axis = (reinterpret_cast(parameter_))->axis_; + MS_CHECK_TRUE(static_cast(in_shape.size()) >= axis, "invalid axis in gather parameter"); + const int limit = in_shape.at(axis); + + int outer_size = 1, inner_size = 1; + for (int i = 0; i < axis; ++i) { + outer_size *= in_shape.at(i); + } + for (int i = axis + 1; i < in_rank; ++i) { + inner_size *= in_shape.at(i); + } + int task_id = 0; + MS_CHECK_TRUE(thread_num_ > 0, "thread_num_ <= 0"); + int stride = UP_DIV(outer_size, thread_num_); + int count = MSMIN(stride, outer_size - stride * task_id); + + // call the op function + if (input0->data_type() == kNumberTypeInt32) { + code.CodeFunction("GatherInt32", input0, count, inner_size, limit, input1, indices_element_size, output_tensor_); + } else { + code.CodeFunction("Gather", input0, count, inner_size, limit, input1, indices_element_size, output_tensor_); + } + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Gather, CPUOpCoderCreator) + +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/gather_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/gather_fp32_coder.h new file mode 100644 index 00000000000..21af92e41da --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/gather_fp32_coder.h @@ -0,0 +1,41 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_GATHER_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_GATHER_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/base/tile_base.h" + +namespace mindspore::lite::micro { +class GatherFP32Coder : public OperatorCoder { + public: + GatherFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~GatherFP32Coder() override = default; + + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; + + private: + int32_t *indices_{nullptr}; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_GATHER_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nchw2nhwc_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nchw2nhwc_fp32_coder.cc new file mode 100644 index 00000000000..b49fdd7c226 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nchw2nhwc_fp32_coder.cc @@ -0,0 +1,51 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/nchw2nhwc_fp32_coder.h" +#include +#include +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Nchw2Nhwc; + +namespace mindspore::lite::micro { +int Nchw2NhwcFP32Coder::Prepare(CoderContext *const context) { return RET_OK; } + +int Nchw2NhwcFP32Coder::DoCode(CoderContext *context) { + // generate code .h .c + Collect(context, {"nnacl/pack.h"}, {"nnacl/pack.c"}); + nnacl::NNaclFp32Serializer code; + if (input_tensor_->shape().size() == 4) { + if (input_tensor_->data_type() == kNumberTypeFloat32) { + code.CodeFunction("PackNCHWToNHWCFp32", input_tensor_, output_tensor_, output_tensor_->Batch(), + output_tensor_->Height() * output_tensor_->Width(), output_tensor_->Channel()); + } else if (input_tensor_->data_type() == kNumberTypeInt8) { + code.CodeFunction("PackNCHWToNHWCInt8", input_tensor_, output_tensor_, output_tensor_->Batch(), + output_tensor_->Height() * output_tensor_->Width(), output_tensor_->Channel()); + } else { + MS_LOG(ERROR) << "unsupported format transform"; + } + } else { + code.CodeFunction("memcpy", output_tensor_, input_tensor_, input_tensor_->ElementsNum() * sizeof(float)); + } + + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Nchw2Nhwc, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nchw2nhwc_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nchw2nhwc_fp32_coder.h new file mode 100644 index 00000000000..1928c818478 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nchw2nhwc_fp32_coder.h @@ -0,0 +1,38 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_NCHW2FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_NCHW2FP32_CODER_H_ + +#include +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/base/tile_base.h" + +namespace mindspore::lite::micro { +class Nchw2NhwcFP32Coder : public OperatorCoder { + public: + Nchw2NhwcFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~Nchw2NhwcFP32Coder() override = default; + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_NCHW2FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nhwc2nchw_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nhwc2nchw_fp32_coder.cc new file mode 100644 index 00000000000..91fbf166b82 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nhwc2nchw_fp32_coder.cc @@ -0,0 +1,50 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/nhwc2nchw_fp32_coder.h" +#include +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Nhwc2Nchw; +namespace mindspore::lite::micro { +int Nhwc2NchwFP32Coder::Prepare(CoderContext *const context) { return RET_OK; } + +int Nhwc2NchwFP32Coder::DoCode(CoderContext *const context) { + // generate code .h .c + Collect(context, {"nnacl/pack.h"}, {"pack.c"}); + + nnacl::NNaclFp32Serializer code; + if (input_tensor_->shape().size() == 4) { + if (input_tensor_->data_type() == kNumberTypeFloat32) { + code.CodeFunction("PackNHWCToNCHWFp32", input_tensor_, output_tensor_, output_tensor_->Batch(), + output_tensor_->Height() * output_tensor_->Width(), output_tensor_->Channel()); + } else if (input_tensor_->data_type() == kNumberTypeInt8) { + code.CodeFunction("PackNHWCToNCHWInt8", input_tensor_, output_tensor_, output_tensor_->Batch(), + output_tensor_->Height() * output_tensor_->Width(), output_tensor_->Channel()); + } else { + MS_LOG(ERROR) << "unsupported format transform"; + } + } else { + code.CodeFunction("memcpy", output_tensor_, input_tensor_, input_tensor_->ElementsNum() * sizeof(float)); + } + + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Nhwc2Nchw, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nhwc2nchw_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nhwc2nchw_fp32_coder.h new file mode 100644 index 00000000000..4f590fa590c --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/nhwc2nchw_fp32_coder.h @@ -0,0 +1,37 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_NHWC2NCHW_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_NHWC2NCHW_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/base/tile_base.h" + +namespace mindspore::lite::micro { +class Nhwc2NchwFP32Coder : public OperatorCoder { + public: + Nhwc2NchwFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + ~Nhwc2NchwFP32Coder() override = default; + + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_NHWC2NCHW_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pad_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pad_fp32_coder.cc new file mode 100644 index 00000000000..573a275a700 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pad_fp32_coder.cc @@ -0,0 +1,103 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/pad_fp32_coder.h" +#include +#include +#include "micro/coder/log.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Pad; + +namespace mindspore::lite::micro { + +int PadFP32Coder::Prepare(CoderContext *const context) { + pad_param_ = reinterpret_cast(parameter_); + return ReSize(); +} + +int PadFP32Coder::ReSize() { + size_t rank = input_tensor_->shape().size(); + if (rank > DEFAULT_PAD_NDIMS) { + MS_LOG(ERROR) << "Pad input rank should <= " << DEFAULT_PAD_NDIMS << ", got " << rank; + return RET_ERROR; + } + if (pad_param_->pad_mode_ == static_cast(schema::PaddingMode_CONSTANT)) { + MS_CHECK_RET_CODE(ExtendShape(in_, DEFAULT_PAD_NDIMS, input_tensor_->shape().data(), rank), + "ExtendShape input error"); + MS_CHECK_RET_CODE(ExtendShape(out_, DEFAULT_PAD_NDIMS, output_tensor_->shape().data(), rank), + "ExtendShape output error"); + if (pad_param_->padding_length < MAX_PAD_SIZE) { + int ori_paddings[MAX_PAD_SIZE]; + for (int i = 0; i < pad_param_->padding_length; ++i) { + ori_paddings[i] = pad_param_->paddings_[i]; + } + MS_CHECK_RET_CODE(ExtendPaddings(pad_param_->paddings_, MAX_PAD_SIZE, ori_paddings, pad_param_->padding_length), + "Extendpadding error"); + pad_param_->padding_length = MAX_PAD_SIZE; + } + } + return RET_OK; +} + +int PadFP32Coder::ExtendShape(int *shape, int length, const int *ori_shape, int rank) { + MS_CHECK_PTR(shape); + MS_CHECK_PTR(ori_shape); + for (int i = 0; i < length - rank; ++i) { + shape[i] = 1; + } + for (int i = length - rank; i < length; ++i) { + shape[i] = ori_shape[i - (length - rank)]; + } + return RET_OK; +} + +int PadFP32Coder::ExtendPaddings(int *paddings, int length, const int *ori_paddings, int ori_length) { + MS_CHECK_PTR(paddings); + MS_CHECK_PTR(ori_paddings); + for (int i = 0; i < length - ori_length; ++i) { + paddings[i] = 0; + } + for (int i = length - ori_length; i < length; ++i) { + paddings[i] = ori_paddings[i - (length - ori_length)]; + } + return RET_OK; +} + +int PadFP32Coder::DoCode(CoderContext *const context) { + int task_id = thread_num_ - 1; + Collect(context, {"nnacl/fp32/pad.h", "nnacl/pad_parameter.h"}, {"nnacl/fp32/pad.c"}); + + nnacl::NNaclFp32Serializer code; + code.CodeArray("in_", in_, DEFAULT_PAD_NDIMS); + code.CodeArray("out_", out_, DEFAULT_PAD_NDIMS); + code.CodeArray("padding_", pad_param_->paddings_, MAX_PAD_SIZE); + + int output_size = output_tensor_->ElementsNum(); + if (pad_param_->constant_value_ - 0.0f < 1e-5) { + code.CodeFunction("memset", output_tensor_, "0", output_size * sizeof(float)); + } else { + std::vector constant_values(output_size, pad_param_->constant_value_); + code.CodeArray("output_tensor_", constant_values.data(), output_size); + } + code.CodeFunction("Pad", input_tensor_, output_tensor_, "in_", "out_", "padding_", task_id, thread_num_); + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Pad, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pad_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pad_fp32_coder.h new file mode 100644 index 00000000000..884eb49038f --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pad_fp32_coder.h @@ -0,0 +1,49 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_PAD_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_PAD_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/fp32/pad_fp32.h" + +namespace mindspore::lite::micro { +class PadFP32Coder : public OperatorCoder { + public: + PadFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~PadFP32Coder() override = default; + + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; + + int ReSize(); + + private: + int ExtendShape(int *shape, int length, const int *ori_shape, int rank); + int ExtendPaddings(int *paddings, int length, const int *ori_paddings, int ori_length); + + protected: + PadParameter *pad_param_{nullptr}; + int in_[DEFAULT_PAD_NDIMS]{0}; + int out_[DEFAULT_PAD_NDIMS]{0}; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_PAD_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pooling_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pooling_fp32_coder.cc new file mode 100644 index 00000000000..f3ea7153148 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pooling_fp32_coder.cc @@ -0,0 +1,103 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "micro/coder/opcoders/nnacl/fp32/pooling_fp32_coder.h" +#include +#include +#include "nnacl/fp32/pooling_fp32.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/log.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Pooling; + +namespace mindspore::lite::micro { + +int PoolingFP32Coder::DoCode(CoderContext *const context) { + // attribute + auto pooling_parameter = reinterpret_cast(parameter_); + int task_id = 0; + // init struct PoolingParameters + pooling_parameter->input_batch_ = input_tensor_->Batch(); + pooling_parameter->input_channel_ = input_tensor_->Channel(); + pooling_parameter->input_h_ = input_tensor_->Height(); + pooling_parameter->input_w_ = input_tensor_->Width(); + pooling_parameter->output_batch_ = output_tensor_->Batch(); + pooling_parameter->output_channel_ = output_tensor_->Channel(); + pooling_parameter->output_h_ = output_tensor_->Height(); + pooling_parameter->output_w_ = output_tensor_->Width(); + + pooling_parameter->thread_num_ = pooling_parameter->op_parameter_.thread_num_; + + nnacl::NNaclFp32Serializer code; + code.CodeStruct("pooling_parameter", *pooling_parameter); + float minf = -FLT_MAX; + float maxf = FLT_MAX; + if (pooling_parameter->pool_mode_ == PoolMode_MaxPool) { + Collect(context, {"nnacl/kernel/fp32/max_pooling_fp32_slim.h"}, {"max_pooling_fp32_slim.c"}); + switch (pooling_parameter->act_type_) { + case ActType_Relu: { + minf = 0.f; + break; + } + case ActType_Relu6: { + minf = 0.f; + maxf = 6.f; + break; + } + default: { + MS_LOG(INFO) << "no actype"; + break; + } + } + + if (thread_num_ > 1) { + code.CodeBaseStruct("PoolingFp32Args", "args", input_tensor_, output_tensor_, "&pooling_parameter", minf, maxf); + CODE_PARALLEL_FUNC("MaxPoolingFp32Run"); + } else { + code.CodeFunction("MaxPooling", input_tensor_, output_tensor_, "&pooling_parameter", task_id, minf, maxf); + } + } else { + Collect(context, {"nnacl/fp32/pooling.h"}, {"pooling.c"}); + switch (pooling_parameter->act_type_) { + case ActType_Relu: { + minf = 0.f; + break; + } + case ActType_Relu6: { + minf = 0.f; + maxf = 6.f; + break; + } + default: { + MS_LOG(INFO) << "no actype"; + break; + } + } + if (thread_num_ > 1) { + code.CodeBaseStruct("PoolingFp32Args", "args", input_tensor_, output_tensor_, "&pooling_parameter", minf, maxf); + CODE_PARALLEL_FUNC("AvgPoolingFp32Run"); + } else { + code.CodeFunction("AvgPooling", input_tensor_, output_tensor_, "&pooling_parameter", task_id, minf, maxf); + } + } + + MS_LOG(INFO) << "PoolingFp32Code has been called"; + context->AppendCode(code.str()); + return lite::RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Pooling, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pooling_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pooling_fp32_coder.h new file mode 100644 index 00000000000..43bf7da358c --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/pooling_fp32_coder.h @@ -0,0 +1,39 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MICRO_CODER_OPCODERS_FP32_POOLFP32_CODER_H_ +#define MICRO_CODER_OPCODERS_FP32_POOLFP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" + +namespace mindspore::lite::micro { + +class PoolingFP32Coder final : public OperatorCoder { + public: + PoolingFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + ~PoolingFP32Coder() override = default; + + int Prepare(CoderContext *const context) override { return RET_OK; } + + int DoCode(CoderContext *const context) override; +}; + +} // namespace mindspore::lite::micro + +#endif // MICRO_CODER_OPCODERS_FP32__CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/power_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/power_fp32_coder.cc new file mode 100644 index 00000000000..b5eda5fc4c8 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/power_fp32_coder.cc @@ -0,0 +1,60 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/power_fp32_coder.h" +#include +#include +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Power; + +namespace mindspore::lite::micro { + +int PowerFP32Coder::DoCode(CoderContext *const context) { + scale_ = reinterpret_cast(parameter_)->scale_; + shift_ = reinterpret_cast(parameter_)->shift_; + + Tensor *filter_tensor = input_tensors_.at(kWeightIndex); + MS_CHECK_PTR(filter_tensor); + int size = input_tensor_->ElementsNum(); + int task_id = 0; + MS_CHECK_TRUE(thread_num_ > 0, "thread_num_ <= 0"); + int stride = UP_DIV(size, thread_num_); + int len = MSMIN(stride, size - stride * task_id); + std::string exp_addr; + bool broadcast = true; + if (input_tensors_.size() == 2) { + exp_addr = allocator_->GetRuntimeAddr(filter_tensor); + broadcast = !(input_tensor_->shape() == filter_tensor->shape()); + } + std::string cur_exp_str; + if (broadcast) { + cur_exp_str = input_tensors_.size() == 2 ? exp_addr : "&power"; + } else { + cur_exp_str = exp_addr; + } + // generate code .h .c + Collect(context, {"nnacl/power.h"}, {"power.c"}); + nnacl::NNaclFp32Serializer code; + code.CodeFunction("Power", input_tensor_, cur_exp_str, output_tensor_, len, scale_, shift_, broadcast); + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Power, CPUOpCoderCreator) + +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/power_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/power_fp32_coder.h new file mode 100644 index 00000000000..9fb3680bbf5 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/power_fp32_coder.h @@ -0,0 +1,42 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_POWER_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_POWER_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/power_parameter.h" + +namespace mindspore::lite::micro { +class PowerFP32Coder : public OperatorCoder { + public: + PowerFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~PowerFP32Coder() override = default; + + int Prepare(CoderContext *const context) override { return RET_OK; } + + int DoCode(CoderContext *const context) override; + + private: + float scale_{0.0f}; + float shift_{0.0f}; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_POWER_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/reshape_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/reshape_fp32_coder.cc new file mode 100644 index 00000000000..8fedab2ecda --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/reshape_fp32_coder.cc @@ -0,0 +1,39 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/reshape_fp32_coder.h" +#include +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Reshape; +namespace mindspore::lite::micro { + +int ReshapeFP32Coder::DoCode(CoderContext *const context) { + size_t data_size = input_tensor_->Size(); + + Collect(context, {"nnacl/reshape.h"}, {"reshape.c"}); + + nnacl::NNaclFp32Serializer code; + code.CodeFunction("Reshape", input_tensor_, output_tensor_, data_size); + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Reshape, CPUOpCoderCreator) + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeInt32, PrimitiveType_Reshape, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/reshape_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/reshape_fp32_coder.h new file mode 100644 index 00000000000..c22a0ebc816 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/reshape_fp32_coder.h @@ -0,0 +1,35 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_RESHAPE_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_RESHAPE_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" + +namespace mindspore::lite::micro { +class ReshapeFP32Coder : public OperatorCoder { + public: + ReshapeFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + ~ReshapeFP32Coder() override = default; + int Prepare(CoderContext *const context) override { return RET_OK; } + + int DoCode(CoderContext *const context) override; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_RESHAPE_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/scale_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/scale_fp32_coder.cc new file mode 100644 index 00000000000..eb3946984e0 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/scale_fp32_coder.cc @@ -0,0 +1,164 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "micro/coder/opcoders/nnacl/fp32/scale_fp32_coder.h" +#include +#include "micro/coder/log.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Scale; + +namespace mindspore::lite::micro { +ScaleFP32Coder::~ScaleFP32Coder() { + if (scale_param_->const_scale_) { + if (scale_) { + free(scale_); + scale_ = nullptr; + } + } + if (scale_param_->const_offset_) { + if (offset_) { + free(offset_); + offset_ = nullptr; + } + } +} + +int ScaleFP32Coder::InitScaleOffset() { + Tensor *scale_tensor = input_tensors_.at(kWeightIndex); + MS_CHECK_PTR(scale_tensor); + if (reinterpret_cast(scale_tensor->data_c())) { + scale_param_->const_scale_ = true; + scale_ = reinterpret_cast(malloc(scale_tensor->ElementsNum() * sizeof(float))); + MS_CHECK_PTR(scale_); + MS_CHECK_TRUE(scale_tensor->Size() > 0, "invalid scale tensor size"); + MS_CHECK_RET_CODE(memcpy_s(scale_, scale_tensor->Size(), scale_tensor->data_c(), scale_tensor->Size()), + "memcpy scale failed"); + } else { + scale_param_->const_scale_ = false; + scale_ = nullptr; + } + + if (input_tensors_.size() == 2) { + scale_param_->const_offset_ = true; + offset_ = reinterpret_cast(malloc(scale_tensor->ElementsNum() * sizeof(float))); + MS_CHECK_PTR(offset_); + MS_CHECK_RET_CODE(memset_s(offset_, scale_tensor->Size(), 0, scale_tensor->Size()), "memset_s failed!"); + } else if (input_tensors_.size() == 3 && reinterpret_cast(input_tensors_.at(2)->data_c())) { + scale_param_->const_offset_ = true; + Tensor *offset_tensor = input_tensors_.at(2); + offset_ = reinterpret_cast(malloc(offset_tensor->ElementsNum() * sizeof(float))); + MS_CHECK_PTR(offset_); + MS_CHECK_TRUE(offset_tensor->Size() > 0, "invalid offset tensor size"); + MS_CHECK_RET_CODE(memcpy_s(offset_, offset_tensor->Size(), offset_tensor->data_c(), offset_tensor->Size()), + "memcpy_s failed!"); + } else { + scale_param_->const_offset_ = false; + offset_ = nullptr; + } + return RET_OK; +} + +int ScaleFP32Coder::CalculateParameter() { + std::vector in_shape = input_tensor_->shape(); + Tensor *scale_tensor = input_tensors_.at(kWeightIndex); + MS_CHECK_PTR(scale_tensor); + std::vector scale_shape = scale_tensor->shape(); + + if (scale_param_->axis_ < 0) { + scale_param_->axis_ = scale_param_->axis_ + in_shape.size(); + } + if (scale_shape.size() + scale_param_->axis_ > in_shape.size()) { + MS_LOG(ERROR) << "Scale tensor shape is incorrect."; + return RET_ERROR; + } + scale_param_->outer_size_ = 1; + scale_param_->axis_size_ = 1; + scale_param_->inner_size_ = 1; + for (int i = 0; i < scale_param_->axis_; i++) { + scale_param_->outer_size_ *= in_shape.at(i); + } + for (size_t i = 0; i < scale_shape.size(); i++) { + if (in_shape.at(i + scale_param_->axis_) != scale_shape.at(i)) { + MS_LOG(ERROR) << "Scale tensor shape is incorrect."; + return RET_ERROR; + } + scale_param_->axis_size_ *= in_shape.at(i + scale_param_->axis_); + } + for (size_t i = scale_param_->axis_ + scale_shape.size(); i < in_shape.size(); i++) { + scale_param_->inner_size_ *= in_shape.at(i); + } + scale_param_->op_parameter_.thread_num_ = MSMIN(scale_param_->op_parameter_.thread_num_, scale_param_->outer_size_); + return RET_OK; +} + +int ScaleFP32Coder::Prepare(CoderContext *const context) { + this->scale_param_ = reinterpret_cast(parameter_); + if (input_tensors_.size() < 2 || input_tensors_.size() > 3) { + MS_LOG(ERROR) << "inputs to Scale operator should be 2 or 3, but " << input_tensors_.size() << " is given."; + return RET_ERROR; + } + MS_CHECK_RET_CODE(InitScaleOffset(), "Scale fp32 InitScaleOffset failed."); + return ReSize(); +} + +int ScaleFP32Coder::ReSize() { + MS_CHECK_RET_CODE(CalculateParameter(), "Scale fp32 CalculateParameter failed."); + return RET_OK; +} + +int ScaleFP32Coder::DoCode(CoderContext *const context) { + // init struct ScaleParameters + Tensor *scale_tensor = input_tensors_.at(kWeightIndex); + Tensor *offset_tensor = input_tensors_.at(kBiasIndex); + MS_CHECK_PTR(scale_tensor); + MS_CHECK_PTR(offset_tensor); + Collect(context, {"nnacl/scale.h", "nnacl/fp32/scale.h", "nnacl/quantization/quantize.h"}, {"scale.c"}); + + nnacl::NNaclFp32Serializer code; + code.CodeStruct("scale_parameter", *scale_param_); + + if (thread_num_ > 1) { + code.CodeBaseStruct("ScaleFp32Args", "args", input_tensor_, output_tensor_, scale_tensor, offset_tensor, + "&scale_parameter"); + CODE_PARALLEL_FUNC("ScaleFp32Run"); + } else { + int task_id = 0; + switch (scale_param_->activation_type_) { + case schema::ActivationType_RELU6: + code.CodeFunction("DoScaleRelu6", input_tensor_, output_tensor_, scale_tensor, offset_tensor, task_id, + "&scale_parameter"); + break; + case schema::ActivationType_RELU: + code.CodeFunction("DoScaleRelu", input_tensor_, output_tensor_, scale_tensor, offset_tensor, task_id, + "&scale_parameter"); + break; + case schema::ActivationType_NO_ACTIVATION: + code.CodeFunction("DoScale", input_tensor_, output_tensor_, scale_tensor, offset_tensor, task_id, + "&scale_parameter"); + break; + default: + MS_LOG(ERROR) << "Scale does not support activation type " << scale_param_->activation_type_; + return RET_ERROR; + } + } + MS_LOG(INFO) << "ScaleFP32Code has been called"; + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Scale, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/scale_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/scale_fp32_coder.h new file mode 100644 index 00000000000..3471f723b3b --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/scale_fp32_coder.h @@ -0,0 +1,49 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MICRO_CODER_OPCODERS_FP32_SCALEFP32_CODER_H_ +#define MICRO_CODER_OPCODERS_FP32_SCALEFP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/scale.h" + +namespace mindspore::lite::micro { + +class ScaleFP32Coder final : public OperatorCoder { + public: + ScaleFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + ~ScaleFP32Coder() override; + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; + + private: + int ReSize(); + int CalculateParameter(); + int InitScaleOffset(); + + private: + ScaleParameter *scale_param_{nullptr}; + float *scale_{nullptr}; + float *offset_{nullptr}; +}; + +} // namespace mindspore::lite::micro + +#endif // MICRO_CODER_OPCODERS_FP32__CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/slice_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/slice_fp32_coder.cc new file mode 100644 index 00000000000..1af22ee660e --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/slice_fp32_coder.cc @@ -0,0 +1,74 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/slice_fp32_coder.h" +#include +#include "nnacl/slice_parameter.h" +#include "src/ops/slice.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Slice; +namespace mindspore::lite::micro { +int SliceFP32Coder::Prepare(CoderContext *const context) { return RET_OK; } + +int SliceFP32Coder::DoCode(CoderContext *const context) { + // generate code .h .c + Collect(context, {"nnacl/slice_parameter.h", "nnacl/fp32/slice.h"}, {"slice.c"}); + + auto param = reinterpret_cast(parameter_); + auto primitive_slice = reinterpret_cast(OperatorCoder::primitive()); + std::vector begin = primitive_slice->GetPostProcessBegin(); + std::vector size = primitive_slice->GetPostProcessSize(); + std::vector input_shape = input_tensor_->shape(); + nnacl::NNaclFp32Serializer code; + for (int i = 0; i < param->param_length_; i++) { + param->shape_[i] = input_shape.at(i); + } + + for (int i = 0; i < param->param_length_; i++) { + param->begin_[i] = begin.at(i); + } + + for (int i = 0; i < param->param_length_; i++) { + int tmp_size = size.at(i); + if (size.at(i) < 0) { + tmp_size = input_shape.at(i) - begin.at(i); + } + param->end_[i] = (begin.at(i) + tmp_size); + } + + for (int i = 0; i < param->param_length_; i++) { + if (size.at(i) < 0) { + param->size_[i] = (input_shape.at(i) - begin.at(i)); + continue; + } + param->size_[i] = size.at(i); + } + + code.CodeStruct("slice_parameter", *param); + + // call the op function + if (param->param_length_ < DIMENSION_4D) { + code.CodeFunction("PadSliceParameterTo4D", "&slice_parameter"); + } + code.CodeFunction("DoSliceNoParallel", input_tensor_, output_tensor_, "&slice_parameter"); + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Slice, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/slice_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/slice_fp32_coder.h new file mode 100644 index 00000000000..221f2cd5bba --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/slice_fp32_coder.h @@ -0,0 +1,37 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_SLICE_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_SLICE_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" + +namespace mindspore::lite::micro { +class SliceFP32Coder : public OperatorCoder { + public: + SliceFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~SliceFP32Coder() override = default; + + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCOD ERS_SLICE_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/squeeze_dims_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/squeeze_dims_fp32_coder.cc new file mode 100644 index 00000000000..f853782c274 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/squeeze_dims_fp32_coder.cc @@ -0,0 +1,45 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/squeeze_dims_fp32_coder.h" +#include +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Squeeze; + +namespace mindspore::lite::micro { + +int SqueezeFP32Coder::DoCode(CoderContext *const context) { + size_t data_size = input_tensor_->Size(); + // generate code .h .c + Collect(context, {"nnacl/squeeze.h"}, {"nnacl/squeeze.c"}); + + nnacl::NNaclFp32Serializer code; + + // call the op function + if (input_tensor_->data_type() == kNumberTypeInt32) { + code.CodeFunction("DoSqueezeInt32", input_tensor_, output_tensor_, data_size); + } else { + code.CodeFunction("DoSqueeze", input_tensor_, output_tensor_, data_size); + } + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Squeeze, CPUOpCoderCreator) + +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/squeeze_dims_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/squeeze_dims_fp32_coder.h new file mode 100644 index 00000000000..10e0e4e1c7d --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/squeeze_dims_fp32_coder.h @@ -0,0 +1,37 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_SQUEEZE_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_SQUEEZE_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" + +namespace mindspore::lite::micro { +class SqueezeFP32Coder : public OperatorCoder { + public: + SqueezeFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~SqueezeFP32Coder() override = default; + + int Prepare(CoderContext *const context) override { return RET_OK; } + + int DoCode(CoderContext *const context) override; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_SQUEEZE_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/tile_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/tile_fp32_coder.cc new file mode 100644 index 00000000000..62cfe3e7405 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/tile_fp32_coder.cc @@ -0,0 +1,68 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/tile_fp32_coder.h" +#include +#include +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Tile; + +namespace mindspore::lite::micro { +void TileFP32Coder::ComputeStrides(const int *shape, int *strides, int ndim) const { + int stride = 1; + for (int i = ndim - 1; i >= 0; i--) { + strides[i] = stride; + stride *= shape[i]; + } +} + +int TileFP32Coder::Resize() { + tile_param_ = reinterpret_cast(parameter_); + MS_CHECK_TRUE(tile_param_->in_dim_ < static_cast(std::extentin_dim_)>::value), + "invalid dims count"); + MS_CHECK_TRUE(static_cast(input_tensor_->shape().size()) < tile_param_->in_dim_, "invalid input shape number."); + MS_CHECK_TRUE(static_cast(output_tensor_->shape().size()) < tile_param_->in_dim_, + "invalid output shape number."); + for (int i = 0; i < tile_param_->in_dim_; ++i) { + tile_param_->in_shape_[i] = input_tensor_->shape().at(i); + tile_param_->out_shape_[i] = output_tensor_->shape().at(i); + } + ComputeStrides(tile_param_->in_shape_, tile_param_->in_strides_, tile_param_->in_dim_); + ComputeStrides(tile_param_->out_shape_, tile_param_->out_strides_, tile_param_->in_dim_); + return RET_OK; +} + +int TileFP32Coder::Prepare(CoderContext *const context) { return Resize(); } + +int TileFP32Coder::DoCode(CoderContext *const context) { + // generate code .h .c + Collect(context, {"nnacl/fp32/tile.h"}, {"nnacl/fp32/tile.c"}); + + nnacl::NNaclFp32Serializer code; + + code.CodeStruct("tile_parameter", *tile_param_); + // call the op function + code.CodeFunction("Tile", input_tensor_, output_tensor_, "&tile_parameter"); + + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Tile, CPUOpCoderCreator) + +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/tile_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/tile_fp32_coder.h new file mode 100644 index 00000000000..fdb749610f5 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/tile_fp32_coder.h @@ -0,0 +1,43 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_TILE_FP32_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_TILE_FP32_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/base/tile_base.h" + +namespace mindspore::lite::micro { +class TileFP32Coder : public OperatorCoder { + public: + TileFP32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + ~TileFP32Coder() override = default; + + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; + + private: + void ComputeStrides(const int *shape, int *strides, int ndim) const; + int Resize(); + + TileParameter *tile_param_{nullptr}; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_TILE_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/transpose_fp32_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/transpose_fp32_coder.cc new file mode 100644 index 00000000000..ad36255757b --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/transpose_fp32_coder.cc @@ -0,0 +1,94 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/fp32/transpose_fp32_coder.h" +#include +#include +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using mindspore::schema::PrimitiveType_Transpose; +namespace mindspore::lite::micro { + +int TransposeFp32Coder::Resize() { + num_unit_ = static_cast(input_tensor_->shape().at(transpose_parameter_->perm_[kNHWC_H])); + thread_h_num_ = MSMIN(thread_num_, num_unit_); + MS_CHECK_TRUE(thread_h_num_ > 0, "thread_h_num_ <= 0"); + thread_h_stride_ = UP_DIV(num_unit_, thread_h_num_); + + std::vector in_shape = input_tensor_->shape(); + std::vector out_shape = output_tensor_->shape(); + transpose_parameter_->strides_[transpose_parameter_->num_axes_ - 1] = 1; + transpose_parameter_->out_strides_[transpose_parameter_->num_axes_ - 1] = 1; + transpose_parameter_->data_size_ = static_cast(input_tensor_->Size()); + for (int i = transpose_parameter_->num_axes_ - 2; i >= 0; i--) { + transpose_parameter_->strides_[i] = in_shape.at(i + 1) * transpose_parameter_->strides_[i + 1]; + transpose_parameter_->out_strides_[i] = out_shape.at(i + 1) * transpose_parameter_->out_strides_[i + 1]; + } + MS_CHECK_TRUE(in_shape.size() > 0, "invalid shape size"); + MS_CHECK_TRUE(out_shape.size() > 0, "invalid shape size"); + auto in_shape_data_size = static_cast(in_shape.size() * sizeof(int)); + auto out_shape_data_size = static_cast(out_shape.size() * sizeof(int)); + in_shape_ = reinterpret_cast(allocator_->Malloc(kNumberTypeInt, in_shape_data_size, kOfflinePackWeight)); + MS_CHECK_PTR(in_shape_); + out_shape_ = + reinterpret_cast(allocator_->Malloc(kNumberTypeInt, out_shape.size() * sizeof(int), kOfflinePackWeight)); + MS_CHECK_PTR(out_shape_); + MS_CHECK_RET_CODE(memcpy_s(in_shape_, in_shape_data_size, in_shape.data(), in_shape_data_size), "memcpy failed"); + MS_CHECK_RET_CODE(memcpy_s(out_shape_, out_shape_data_size, out_shape.data(), out_shape_data_size), "memcpy failed"); + return RET_OK; +} + +int TransposeFp32Coder::Init() { + transpose_parameter_ = reinterpret_cast(parameter_); + MS_CHECK_PTR(transpose_parameter_); + return Resize(); +} + +int TransposeFp32Coder::Prepare(CoderContext *const context) { + MS_CHECK_RET_CODE(Init(), "init failed"); + int out_dims = static_cast(output_tensor_->shape().size()); + auto out_data_dims_size = static_cast(out_dims * thread_h_num_ * sizeof(int)); + if (out_dims > MAX_TRANSPOSE_DIM_SIZE) { + dim_size_ = reinterpret_cast(allocator_->Malloc(kNumberTypeInt, out_data_dims_size, kWorkspace)); + MS_CHECK_PTR(dim_size_); + position_ = reinterpret_cast(allocator_->Malloc(kNumberTypeInt, out_data_dims_size, kWorkspace)); + MS_CHECK_PTR(position_); + } + return RET_OK; +} + +int TransposeFp32Coder::DoCode(CoderContext *const context) { + int task_id = 0; + int num_unit_thread = MSMIN(thread_h_stride_, num_unit_ - task_id * thread_h_stride_); + if (num_unit_thread <= 0) { + return RET_OK; + } + + Collect(context, {"nnacl/transpose.h", "nnacl/fp32/transpose.h", "nnacl/errorcode.h"}, {"transpose.c"}); + + nnacl::NNaclFp32Serializer code; + code.CodeStruct("transpose_parameter", *transpose_parameter_); + + code.CodeFunction("DoTransposeFp32", input_tensor_, output_tensor_, in_shape_, out_shape_, "&transpose_parameter", + task_id, num_unit_thread, dim_size_, position_); + + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeFloat32, PrimitiveType_Transpose, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/fp32/transpose_fp32_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/transpose_fp32_coder.h new file mode 100644 index 00000000000..00f701c0609 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/fp32/transpose_fp32_coder.h @@ -0,0 +1,53 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MICRO_LITE_MICRO_CODER_OPCODERS_NNACL_FP32_TRANSPOSE_FP32_CODER_H_ +#define MICRO_LITE_MICRO_CODER_OPCODERS_NNACL_FP32_TRANSPOSE_FP32_CODER_H_ +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/transpose.h" +namespace mindspore::lite::micro { + +class TransposeFp32Coder final : public OperatorCoder { + public: + TransposeFp32Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~TransposeFp32Coder() override = default; + + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; + + int Resize(); + + int Init(); + + private: + TransposeParameter *transpose_parameter_ = nullptr; + int thread_num_ = 1; + int thread_h_stride_ = 0; + int thread_h_num_ = 0; + int num_unit_ = 0; + int *in_shape_ = nullptr; + int *out_shape_ = nullptr; + int *dim_size_ = nullptr; + int *position_ = nullptr; +}; + +} // namespace mindspore::lite::micro +#endif // MICRO_LITE_MICRO_CODER_OPCODERS_NNACL_FP32_TRANSPOSE_FP32_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/int8/concat_int8_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/int8/concat_int8_coder.cc new file mode 100644 index 00000000000..e1ccea46c30 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/int8/concat_int8_coder.cc @@ -0,0 +1,114 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/int8/concat_int8_coder.h" +#include +#include "nnacl/int8/concat_int8.h" +#include "nnacl/int8/arithmetic_int8.h" +#include "nnacl/int8/quantize.h" +#include "micro/coder/opcoders/file_collector.h" +#include "micro/coder/log.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h" + +int MallocQuantArgForConcat(ConcatQuantArg *quant_arg, size_t input_num) { + quant_arg->in_args_ = static_cast(malloc(sizeof(QuantArg) * input_num)); + MS_CHECK_PTR(quant_arg->in_args_); + return mindspore::lite::RET_OK; +} + +using mindspore::schema::PrimitiveType_Concat; + +namespace mindspore::lite::micro { +int ConcatInt8Coder::Prepare(CoderContext *const context) { + this->concat_param_ = reinterpret_cast(parameter_); + + concat_param_->input_shapes_ = nullptr; + size_t input_num = input_tensors().size(); + MS_CHECK_PTR(input_data_); + MS_CHECK_RET_CODE(MallocQuantArgForConcat(&concat_param_->quant_arg_, input_num), + "Null pointer reference: quant_concat_parm_->in_quant_args_."); + for (int i = 0; i < static_cast(input_num); i++) { + auto *input_tensor = input_tensors().at(i); + auto quant_args = input_tensor->quant_params(); + concat_param_->quant_arg_.in_args_[i].scale_ = quant_args.at(0).scale; + concat_param_->quant_arg_.in_args_[i].zp_ = quant_args.at(0).zeroPoint; + } + + auto quant_args = output_tensor_->quant_params(); + concat_param_->quant_arg_.out_args_.scale_ = quant_args.at(0).scale; + concat_param_->quant_arg_.out_args_.zp_ = quant_args.at(0).zeroPoint; + + concat_param_->quant_arg_.output_activation_min_ = std::numeric_limits::min(); + concat_param_->quant_arg_.output_activation_max_ = std::numeric_limits::max(); + // concat base resize + axis_ = concat_param_->axis_ >= 0 ? concat_param_->axis_ : input_tensor_->shape().size() + concat_param_->axis_; + // concat int8 resize + concat_param_->input_num_ = input_num; + concat_param_->input_shapes_ = reinterpret_cast(malloc(sizeof(int *) * input_num)); + MS_CHECK_PTR(concat_param_->input_shapes_); + for (int i = 0; i < static_cast(input_num); i++) { + concat_param_->input_shapes_[i] = reinterpret_cast(input_tensors().at(i)->shape().data()); + } + + before_axis_size = 1; + for (int i = 0; i < axis_ && i < static_cast(output_tensor_->shape().size()); i++) { + before_axis_size *= output_tensor_->DimensionSize(i); + } + + int64_t after_axis_size = 1; + int output_dim = static_cast(output_tensor_->shape().size()); + concat_param_->output_shapes_ = output_tensor_->shape().data(); + for (int i = axis_ + 1; i < output_dim; i++) { + after_axis_size *= concat_param_->output_shapes_[i]; + } + concat_param_->after_axis_size = after_axis_size; + return RET_OK; +} + +int ConcatInt8Coder::DoCode(CoderContext *const context) { + concat_param_->thread_count_ = thread_num_; + MS_CHECK_TRUE(thread_num_ > 0, "thread_num_ <= 0"); + count_unit_ = thread_num_ > 1 ? UP_DIV(before_axis_size, thread_num_) : before_axis_size; + concat_param_->count_unit_ = count_unit_; + + Collect(context, {"nnacl/int8/concat_int8.h"}, {"concat_int8.c"}); + nnacl::NNaclInt8Serializer code; + + int in_tensor_count = input_tensors().size(); + code << "int8_t *input_data[" << in_tensor_count << "];\n"; + // input data + for (int i = 0; i < static_cast(input_tensors().size()); ++i) { + MS_CHECK_PTR(input_tensors().at(i)); + code << "input_data[" << i << "] = " << allocator_->GetRuntimeAddr(input_tensors().at(i)) << ";\n"; + } + code.CodeStruct("concat_param", *concat_param_, in_tensor_count, input_tensor_->shape().size(), + output_tensor_->shape().size()); + + if (thread_num_ > 1) { + code.CodeBaseStruct("ConcatInt8Args", "args", "input_data", output_tensor_, "&concat_param", axis_, + before_axis_size, count_unit_); + code.CodeFunction("ParallelLaunch", "THREAD_POOL_DEFAULT", "ConcatInt8Run", "&args", "thread_num"); + } else { + int task_id = 0; + int64_t real_dst_count = MSMIN(before_axis_size - task_id * count_unit_, count_unit_); + code.CodeFunction("Int8Concat", "input_data", output_tensor_, "&concat_param", axis_, real_dst_count, task_id); + } + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeInt8, PrimitiveType_Concat, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/int8/concat_int8_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/int8/concat_int8_coder.h new file mode 100644 index 00000000000..3583597296a --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/int8/concat_int8_coder.h @@ -0,0 +1,56 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_CONCAT_INT8_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_CONCAT_INT8_CODER_H_ + +#include +#include +#include "micro/coder/opcoders/op_coder.h" +#include "nnacl/int8/concat_int8.h" + +namespace mindspore::lite::micro { +class ConcatInt8Coder : public OperatorCoder { + public: + ConcatInt8Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~ConcatInt8Coder() { + if (concat_param_ == nullptr) { + return; + } + if (concat_param_->quant_arg_.in_args_ != nullptr) { + free(concat_param_->quant_arg_.in_args_); + } + if (concat_param_->input_shapes_ != nullptr) { + free(concat_param_->input_shapes_); + } + } + + int Prepare(CoderContext *const context) override; + + int DoCode(CoderContext *const context) override; + + private: + ConcatParameter *concat_param_{nullptr}; + int64_t before_axis_size{0}; + int64_t count_unit_{0}; + int8_t *input_data_{nullptr}; + int axis_ = 0; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_CONCAT_INT8_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/int8/pooling_int8_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/int8/pooling_int8_coder.cc new file mode 100644 index 00000000000..704a65afc4f --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/int8/pooling_int8_coder.cc @@ -0,0 +1,82 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "micro/coder/opcoders/nnacl/int8/pooling_int8_coder.h" +#include +#include +#include +#include "nnacl/int8/pooling_int8.h" +#include "micro/coder/log.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h" +#include "micro/coder/opcoders/file_collector.h" + +using std::string; + +using mindspore::schema::PrimitiveType_Pooling; +namespace mindspore::lite::micro { + +int PoolingInt8Coder::DoCode(CoderContext *const context) { + // attribute + auto *pooling_parameter = reinterpret_cast(parameter_); + MS_CHECK_PTR(pooling_parameter); + // init struct PoolingParameters + Tensor *in_tensor = input_tensors_.at(kInputIndex); + Tensor *out_tensor = output_tensors_.at(kOutputIndex); + MS_CHECK_PTR(in_tensor); + MS_CHECK_PTR(out_tensor); + pooling_parameter->input_batch_ = in_tensor->Batch(); + pooling_parameter->input_channel_ = in_tensor->Channel(); + pooling_parameter->input_h_ = in_tensor->Height(); + pooling_parameter->input_w_ = in_tensor->Width(); + pooling_parameter->output_batch_ = out_tensor->Batch(); + pooling_parameter->output_channel_ = out_tensor->Channel(); + pooling_parameter->output_h_ = out_tensor->Height(); + pooling_parameter->output_w_ = out_tensor->Width(); + + // get quant params + std::vector in_quant_args = in_tensor->quant_params(); + std::vector out_quant_args = out_tensor->quant_params(); + Collect(context, {"nnacl/int8/pooling_int8.h", "nnacl/errorcode.h"}, {"pooling_int8.c"}); + nnacl::NNaclInt8Serializer code; + code.precision(kPrecision); + // code op parameter + ::QuantArg quant_arg_in = {static_cast(in_quant_args.at(0).scale), in_quant_args.at(0).zeroPoint}; + ::QuantArg quant_arg_out = {static_cast(out_quant_args.at(0).scale), out_quant_args.at(0).zeroPoint}; + ::QuantArg *quant_args[2] = {&quant_arg_in, &quant_arg_out}; + pooling_parameter->quant_args_ = quant_args; + code.CodeStruct("pooling_parameter", *pooling_parameter); + + if (thread_num_ > 1) { + code.CodeBaseStruct("PoolingInt8Args", "args", in_tensor, out_tensor, "(PoolingParameter *)&pooling_parameter"); + if (pooling_parameter->pool_mode_ == PoolMode_MaxPool) { + code.CodeFunction("ParallelLaunch", "THREAD_POOL_DEFAULT", "MaxPoolingInt8Run", "&args", "thread_num"); + } else { + code.CodeFunction("ParallelLaunch", "THREAD_POOL_DEFAULT", "AvgPoolingInt8Run", "&args", "thread_num"); + } + } else { + int task_id = 0; + if (pooling_parameter->pool_mode_ == PoolMode_MaxPool) { + code.CodeFunction("MaxPoolingInt8", in_tensor, out_tensor, "(PoolingParameter *)&pooling_parameter", task_id); + } else { + code.CodeFunction("AvgPoolingInt8", in_tensor, out_tensor, "(PoolingParameter *)&pooling_parameter", task_id); + } + } + MS_LOG(INFO) << "PoolingInt8Code has been called"; + context->AppendCode(code.str()); + return lite::RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeInt8, PrimitiveType_Pooling, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/int8/pooling_int8_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/int8/pooling_int8_coder.h new file mode 100644 index 00000000000..c24bbf3916b --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/int8/pooling_int8_coder.h @@ -0,0 +1,42 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_POOLING_INT8_CODER_H +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_POOLING_INT8_CODER_H + +#include +#include +#include +#include "micro/coder/opcoders/op_coder.h" + +namespace mindspore::lite::micro { + +class PoolingInt8Coder final : public OperatorCoder { + public: + PoolingInt8Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~PoolingInt8Coder() override = default; + + int Prepare(CoderContext *const context) override { return RET_OK; } + + int DoCode(CoderContext *const context) override; +}; + +} // namespace mindspore::lite::micro + +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_POOLING_INT8_CODER_H diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/int8/reshape_int8_coder.cc b/mindspore/lite/micro/coder/opcoders/nnacl/int8/reshape_int8_coder.cc new file mode 100644 index 00000000000..149ef5388fa --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/int8/reshape_int8_coder.cc @@ -0,0 +1,58 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/nnacl/int8/reshape_int8_coder.h" +#include +#include +#include "micro/coder/opcoders/file_collector.h" +#include "micro/coder/log.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h" + +using mindspore::schema::PrimitiveType_Reshape; + +namespace mindspore::lite::micro { + +int ReshapeInt8Coder::DoCode(CoderContext *const context) { + Tensor *input = OperatorCoder::input_tensors().at(kInputIndex); + Tensor *output = OperatorCoder::output_tensors().at(kOutputIndex); + MS_CHECK_PTR(input); + MS_CHECK_PTR(output); + int elements_num = input->ElementsNum(); + std::vector input_quant_args = input->quant_params(); + std::vector output_quant_args = output->quant_params(); + + Collect(context, {"nnacl/int8/reshape_int8.h"}, {"reshape_int8.c"}); + nnacl::NNaclInt8Serializer code; + code.precision(kPrecision); + ReshapeQuantArg reshape_quant_arg = { + {static_cast(input_quant_args.at(0).scale), input_quant_args.at(0).zeroPoint}, + {static_cast(output_quant_args.at(0).scale), output_quant_args.at(0).zeroPoint}, + INT8_MIN, + INT8_MAX}; + code.CodeStruct("reshape_quant_arg", reshape_quant_arg); + + if (thread_num_ > 1) { + code.CodeBaseStruct("ReshapeInt8Args", "args", input, output, elements_num, thread_num_s_, "reshape_quant_arg"); + CODE_PARALLEL_FUNC("ReshapeInt8Run"); + } else { + code.CodeFunction("Int8Reshape", input, output, elements_num, "reshape_quant_arg"); + } + context->AppendCode(code.str()); + return RET_OK; +} + +REG_OPERATOR_CODER(kAllTargets, kNumberTypeInt8, PrimitiveType_Reshape, CPUOpCoderCreator) +} // namespace mindspore::lite::micro diff --git a/mindspore/lite/micro/coder/opcoders/nnacl/int8/reshape_int8_coder.h b/mindspore/lite/micro/coder/opcoders/nnacl/int8/reshape_int8_coder.h new file mode 100644 index 00000000000..a5485e05348 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/nnacl/int8/reshape_int8_coder.h @@ -0,0 +1,37 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MINDSPORE_LITE_MICRO_CODER_OPCODERS_RESHAPE_INT8_CODER_H_ +#define MINDSPORE_LITE_MICRO_CODER_OPCODERS_RESHAPE_INT8_CODER_H_ + +#include +#include "micro/coder/opcoders/op_coder.h" + +namespace mindspore::lite::micro { +class ReshapeInt8Coder : public OperatorCoder { + public: + ReshapeInt8Coder(const std::vector &in_tensors, const std::vector &out_tensors, + const Model::Node *node, size_t node_index, Target target) + : OperatorCoder(in_tensors, out_tensors, node, node_index, target) {} + + ~ReshapeInt8Coder() override = default; + + int Prepare(CoderContext *const context) override { return RET_OK; } + + int DoCode(CoderContext *const context) override; +}; +} // namespace mindspore::lite::micro +#endif // MINDSPORE_LITE_MICRO_CODER_OPCODERS_RESHAPE_INT8_CODER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.cc b/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.cc new file mode 100644 index 00000000000..a2880a236b0 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.cc @@ -0,0 +1,94 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h" +#include "src/common/log_adapter.h" +#include "micro/coder/log.h" +#include "nnacl/pooling_parameter.h" + +namespace mindspore::lite::micro::nnacl { + +void NNaclFp32Serializer::CodeStruct(const std::string &name, const PoolingParameter &pooling_parameter) { + CodeBaseStruct("PoolingParameter", name, pooling_parameter.op_parameter_, pooling_parameter.pool_mode_, + pooling_parameter.round_mode_, pooling_parameter.act_type_, pooling_parameter.avg_mode_, + pooling_parameter.global_, pooling_parameter.window_w_, pooling_parameter.window_h_, + pooling_parameter.stride_w_, pooling_parameter.stride_h_, pooling_parameter.input_w_, + pooling_parameter.input_w_, pooling_parameter.input_batch_, pooling_parameter.input_channel_, + pooling_parameter.output_w_, pooling_parameter.output_h_, pooling_parameter.output_batch_, + pooling_parameter.output_channel_, pooling_parameter.pad_u_, pooling_parameter.pad_d_, + pooling_parameter.pad_l_, pooling_parameter.pad_r_, pooling_parameter.thread_num_, "NULL", + pooling_parameter.quantize_); +} + +void NNaclFp32Serializer::CodeStruct(const std::string &name, const BatchNormParameter &batch_norm_parameter) { + CodeBaseStruct("BatchNormParameter", name, batch_norm_parameter.op_parameter_, batch_norm_parameter.epsilon_, + batch_norm_parameter.momentum_, batch_norm_parameter.unit_, batch_norm_parameter.units_, + batch_norm_parameter.channel_, batch_norm_parameter.fused_); +} + +void NNaclFp32Serializer::CodeStruct(const std::string &name, const ArithmeticParameter &arithmetic_parameter) { + CodeBaseStruct("ArithmeticParameter", name, arithmetic_parameter.op_parameter_, arithmetic_parameter.broadcasting_, + arithmetic_parameter.ndim_, arithmetic_parameter.activation_type_, + ToString(arithmetic_parameter.in_shape0_), arithmetic_parameter.in_elements_num0_, + ToString(arithmetic_parameter.in_shape1_), arithmetic_parameter.in_elements_num1_, + ToString(arithmetic_parameter.out_shape_), arithmetic_parameter.out_elements_num_, + ToString(arithmetic_parameter.in_strides0_), ToString(arithmetic_parameter.in_strides1_), + ToString(arithmetic_parameter.out_strides_), ToString(arithmetic_parameter.multiples0_), + ToString(arithmetic_parameter.multiples1_)); +} + +void NNaclFp32Serializer::CodeStruct(const std::string &name, const SoftmaxParameter &softmax_parameter) { + CodeBaseStruct("SoftmaxParameter", name, softmax_parameter.op_parameter_, softmax_parameter.axis_, + ToString(softmax_parameter.input_shape_), softmax_parameter.element_size_, softmax_parameter.n_dim_); +} + +void NNaclFp32Serializer::CodeStruct(const std::string &name, const ConvParameter &conv_parameter) { + CodeBaseStruct("ConvParameter", name, conv_parameter.op_parameter_, "{NULL}", conv_parameter.kernel_h_, + conv_parameter.kernel_w_, conv_parameter.stride_h_, conv_parameter.stride_w_, + conv_parameter.dilation_h_, conv_parameter.dilation_w_, conv_parameter.pad_u_, conv_parameter.pad_d_, + conv_parameter.pad_l_, conv_parameter.pad_r_, conv_parameter.group_, conv_parameter.tile_num_, + conv_parameter.input_batch_, conv_parameter.input_h_, conv_parameter.input_w_, + conv_parameter.input_channel_, conv_parameter.output_batch_, conv_parameter.output_h_, + conv_parameter.output_w_, conv_parameter.output_channel_, conv_parameter.op_parameter_.thread_num_, + conv_parameter.input_unit_, conv_parameter.output_unit_, conv_parameter.act_type_); +} + +void NNaclFp32Serializer::CodeStruct(const std::string &name, const ScaleParameter &scale_parameter) { + CodeBaseStruct("ScaleParameter", name, scale_parameter.op_parameter_, scale_parameter.outer_size_, + scale_parameter.axis_size_, scale_parameter.inner_size_, scale_parameter.axis_, + scale_parameter.const_scale_, scale_parameter.const_offset_); +} + +void NNaclFp32Serializer::CodeStruct(const std::string &name, const SliceParameter &slice_parameter) { + CodeBaseStruct("SliceParameter", name, slice_parameter.op_parameter_, ToString(slice_parameter.shape_), + ToString(slice_parameter.begin_), ToString(slice_parameter.end_), ToString(slice_parameter.size_), + "{0}", slice_parameter.param_length_); +} + +void NNaclFp32Serializer::CodeStruct(const std::string &name, const TileParameter &tile_parameter) { + CodeBaseStruct("TileParameter", name, tile_parameter.op_parameter_, ToString(tile_parameter.multiples_), + ToString(tile_parameter.in_shape_), ToString(tile_parameter.out_shape_), + ToString(tile_parameter.in_strides_), ToString(tile_parameter.out_strides_), tile_parameter.in_dim_); +} + +void NNaclFp32Serializer::CodeStruct(const std::string &name, const TransposeParameter &transpose_parameter) { + CodeBaseStruct("TransposeParameter", name, transpose_parameter.op_parameter_, ToString(transpose_parameter.perm_), + transpose_parameter.conjugate_, ToString(transpose_parameter.strides_), + ToString(transpose_parameter.out_strides_), transpose_parameter.num_axes_, + transpose_parameter.data_size_); +} + +} // namespace mindspore::lite::micro::nnacl diff --git a/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h b/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h new file mode 100644 index 00000000000..a77fb290422 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_fp32_serializer.h @@ -0,0 +1,51 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef MICRO_MICRO_CODER_OPCODERS_SERIALIZERS_NNACL_FP32_SERIALIZER_H_ +#define MICRO_MICRO_CODER_OPCODERS_SERIALIZERS_NNACL_FP32_SERIALIZER_H_ +#include +#include +#include "micro/coder/opcoders/serializers/serializer.h" +#include "nnacl/batchnorm_parameter.h" +#include "nnacl/fp32/arithmetic_fp32.h" +#include "nnacl/conv_parameter.h" +#include "nnacl/matmul_parameter.h" +#include "nnacl/scale.h" +#include "nnacl/slice_parameter.h" +#include "nnacl/base/tile_base.h" +#include "nnacl/fp32/transpose_fp32.h" +#include "nnacl/pooling_parameter.h" +#include "nnacl/softmax_parameter.h" +namespace mindspore::lite::micro::nnacl { + +class NNaclFp32Serializer : public Serializer { + public: + NNaclFp32Serializer() = default; + ~NNaclFp32Serializer() = default; + void CodeStruct(const std::string &name, const PoolingParameter &pooling_parameter); + void CodeStruct(const std::string &name, const SoftmaxParameter &softmax_parameter); + void CodeStruct(const std::string &name, const BatchNormParameter &batch_norm_parameter); + void CodeStruct(const std::string &name, const ArithmeticParameter &arithmetic_parameter); + void CodeStruct(const std::string &name, const ConvParameter &conv_parameter); + void CodeStruct(const std::string &name, const MatMulParameter &mat_mul_parameter); + void CodeStruct(const std::string &name, const ScaleParameter &scale_parameter); + void CodeStruct(const std::string &name, const SliceParameter &slice_parameter); + void CodeStruct(const std::string &name, const TileParameter &tile_parameter); + void CodeStruct(const std::string &name, const TransposeParameter &transpose_parameter); +}; + +} // namespace mindspore::lite::micro::nnacl +#endif // MICRO_MICRO_CODER_OPCODERS_SERIALIZERS_NNACL_FP32_ERIALIZER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.cc b/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.cc new file mode 100644 index 00000000000..4e7b0f9206a --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.cc @@ -0,0 +1,119 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h" +#include +#include "src/common/log_adapter.h" +#include "micro/coder/log.h" + +namespace mindspore::lite::micro::nnacl { +void NNaclInt8Serializer::CodeStruct(const std::string &name, const ArithmeticParameter &arithmetic_parameter) { + CodeBaseStruct("ArithmeticParameter", name, arithmetic_parameter.op_parameter_, arithmetic_parameter.broadcasting_, + arithmetic_parameter.ndim_, arithmetic_parameter.activation_type_, + ToString(arithmetic_parameter.in_shape0_), arithmetic_parameter.in_elements_num0_, + ToString(arithmetic_parameter.in_shape1_), arithmetic_parameter.in_elements_num1_, + ToString(arithmetic_parameter.out_shape_), arithmetic_parameter.out_elements_num_, + ToString(arithmetic_parameter.in_strides0_), ToString(arithmetic_parameter.in_strides1_), + ToString(arithmetic_parameter.out_strides_), ToString(arithmetic_parameter.multiples0_), + ToString(arithmetic_parameter.multiples1_)); +} + +void NNaclInt8Serializer::CodeStruct(const std::string &name, const PoolingParameter &pooling_parameter) { + std::string quant_name = name + "_quant"; + std::string in_quant_name = quant_name + "_in"; + std::string out_quant_name = quant_name + "_out"; + + MS_CHECK_PTR_IF_NULL(pooling_parameter.quant_args_); + ::QuantArg *in_quant_args = pooling_parameter.quant_args_[0]; + ::QuantArg *out_quant_args = pooling_parameter.quant_args_[1]; + MS_CHECK_PTR_IF_NULL(in_quant_args); + MS_CHECK_PTR_IF_NULL(out_quant_args); + + code << "static QuantArg " << in_quant_name << " = " << *out_quant_args << ";\n"; + code << "static QuantArg " << out_quant_name << " = " << *out_quant_args << ";\n"; + + code << "static QuantArg *" << quant_name << "[2] = {" + << " &" << in_quant_name << ", " + << " &" << out_quant_name << "};\n"; + + CodeBaseStruct("PoolingParameter", name, pooling_parameter.op_parameter_, pooling_parameter.pool_mode_, + pooling_parameter.round_mode_, pooling_parameter.act_type_, pooling_parameter.avg_mode_, + pooling_parameter.global_, pooling_parameter.window_w_, pooling_parameter.window_h_, + pooling_parameter.stride_w_, pooling_parameter.stride_h_, pooling_parameter.input_w_, + pooling_parameter.input_h_, pooling_parameter.input_batch_, pooling_parameter.input_channel_, + pooling_parameter.output_w_, pooling_parameter.output_h_, pooling_parameter.output_batch_, + pooling_parameter.output_channel_, pooling_parameter.pad_u_, pooling_parameter.pad_d_, + pooling_parameter.pad_l_, pooling_parameter.pad_r_, pooling_parameter.op_parameter_.thread_num_, + quant_name, pooling_parameter.quantize_); +} + +void NNaclInt8Serializer::CodeStruct(const std::string &name, const SoftmaxParameter &softmax_parameter) { + CodeBaseStruct("SoftmaxParameter", name, softmax_parameter.op_parameter_, softmax_parameter.axis_, + ToString(softmax_parameter.input_shape_), softmax_parameter.element_size_, softmax_parameter.n_dim_); +} + +void NNaclInt8Serializer::CodeStruct(const std::string &name, const SoftmaxQuantArg &softmax_quant_parameter) { + CodeBaseStruct("SoftmaxQuantArg", name, softmax_quant_parameter.in_quant_args_, + softmax_quant_parameter.out_quant_arg_, softmax_quant_parameter.output_activation_min_, + softmax_quant_parameter.output_activation_max_, softmax_quant_parameter.output_multiplier_, + softmax_quant_parameter.shift_left_, softmax_quant_parameter.shift_right_); +} + +void NNaclInt8Serializer::CodeStruct(const std::string &name, const ConcatParameter &concat_parameter, + int in_tensor_count, int in_shape, int out_shape) { + std::string quant_arg_name = name + "_quant_arg"; + std::string in_args_name = quant_arg_name + "_in_args"; + std::string input_shapes_name = name + "_input_shapes"; + std::string output_shapes_name = name + "_output_shapes"; + + CodeArray(in_args_name, concat_parameter.quant_arg_.in_args_, in_tensor_count, false); + CodeBaseStruct("ConcatQuantArg", quant_arg_name, in_args_name, concat_parameter.quant_arg_.out_args_, + concat_parameter.quant_arg_.output_activation_min_, + concat_parameter.quant_arg_.output_activation_max_); + + auto get_shape_name = [&input_shapes_name](int i) { return input_shapes_name + "_" + std::to_string(i); }; + // input_shape + for (int i = 0; i < in_tensor_count; ++i) { + CodeArray(get_shape_name(i), concat_parameter.input_shapes_[i], in_shape); + } + + code << "const int *" << input_shapes_name << "[] = {"; + for (int i = 0; i < in_tensor_count; ++i) { + code << get_shape_name(i) << " ,"; + } + code << "};\n"; + // output_shape + CodeArray(output_shapes_name, concat_parameter.output_shapes_, out_shape, false); + + CodeBaseStruct("ConcatParameter", name, concat_parameter.op_parameter_, quant_arg_name, concat_parameter.axis_, + concat_parameter.thread_count_, concat_parameter.input_num_, input_shapes_name, output_shapes_name, + concat_parameter.after_axis_size, concat_parameter.count_unit_); +} + +void NNaclInt8Serializer::CodeStruct(const std::string &name, const ReduceQuantArg &reduce_quant_arg) { + CodeBaseStruct( + "ReduceQuantArg", name, reduce_quant_arg.in_scale_, reduce_quant_arg.in_zp_, reduce_quant_arg.out_scale_, + reduce_quant_arg.out_zp_, reduce_quant_arg.in_out_multiplier_, reduce_quant_arg.in_out_left_shift_, + reduce_quant_arg.in_out_right_shift_, reduce_quant_arg.mean_multiplier_, reduce_quant_arg.mean_left_shift_, + reduce_quant_arg.mean_right_shift_, reduce_quant_arg.prod_multiplier_, reduce_quant_arg.prod_left_shift_, + reduce_quant_arg.prod_right_shift_, reduce_quant_arg.sum_square_multiplier_, + reduce_quant_arg.sum_square_left_shift_, reduce_quant_arg.sum_square_right_shift_); +} +void NNaclInt8Serializer::CodeStruct(const std::string &name, const ReshapeQuantArg &reshape_quant_arg) { + CodeBaseStruct("ReshapeQuantArg", name, reshape_quant_arg.in_args_, reshape_quant_arg.out_args_, + reshape_quant_arg.output_activation_min_, reshape_quant_arg.output_activation_max_); +} + +} // namespace mindspore::lite::micro::nnacl diff --git a/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h b/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h new file mode 100644 index 00000000000..b8a04f8069f --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_int8_serializer.h @@ -0,0 +1,51 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +#ifndef MICRO_MICRO_CODER_OPCODERS_SERIALIZERS_NNACL_INT8_SERIALIZER_H_ +#define MICRO_MICRO_CODER_OPCODERS_SERIALIZERS_NNACL_INT8_SERIALIZER_H_ +#include +#include +#include "nnacl/pooling_parameter.h" +#include "nnacl/softmax_parameter.h" +#include "micro/coder/opcoders/serializers/serializer.h" +#include "nnacl/int8/add_int8.h" +#include "nnacl/int8/arithmetic_int8.h" +#include "nnacl/conv_parameter.h" +#include "nnacl/matmul_parameter.h" +#include "nnacl/int8/concat_int8.h" +#include "nnacl/int8/quantize.h" +#include "nnacl/reshape_parameter.h" + +namespace mindspore::lite::micro::nnacl { + +class NNaclInt8Serializer : public Serializer { + public: + NNaclInt8Serializer() = default; + ~NNaclInt8Serializer() = default; + void CodeStruct(const std::string &name, const ConvParameter &conv_parameter); + void CodeStruct(const std::string &name, const MatMulParameter &matmul_parameter); + void CodeStruct(const std::string &name, const AddQuantParameter &add_quant_parameter); + void CodeStruct(const std::string &name, const ArithmeticParameter &arithmetic_parameter); + void CodeStruct(const std::string &name, const PoolingParameter &pooling_parameter); + void CodeStruct(const std::string &name, const SoftmaxParameter &softmax_parameter); + void CodeStruct(const std::string &name, const SoftmaxQuantArg &softmax_quant_parameter); + void CodeStruct(const std::string &name, const ConcatParameter &concat_parameter, int input_tensors, int in_shape, + int out_shape); + void CodeStruct(const std::string &name, const ReduceQuantArg &reduce_quant_arg); + void CodeStruct(const std::string &name, const ReshapeQuantArg &reshape_quant_arg); +}; + +} // namespace mindspore::lite::micro::nnacl +#endif // MICRO_MICRO_CODER_OPCODERS_SERIALIZERS_NNACL_INT8_SERIALIZER_H_ diff --git a/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_stream_utils.h b/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_stream_utils.h new file mode 100644 index 00000000000..31a579df0a1 --- /dev/null +++ b/mindspore/lite/micro/coder/opcoders/serializers/nnacl_serializer/nnacl_stream_utils.h @@ -0,0 +1,65 @@ +/** + * Copyright 2021 Huawei Technologies Co., Ltd + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#ifndef LITE_MICRO_CODER_OPCODERS_SERIALIZERS_NNACL_STREAM_UTILS_H_ +#define LITE_MICRO_CODER_OPCODERS_SERIALIZERS_NNACL_STREAM_UTILS_H_ +#include +#include +#include "nnacl/pooling_parameter.h" +#include "nnacl/softmax_parameter.h" +#include "nnacl/int8/quantize.h" + +namespace mindspore::lite::micro { + +inline std::ostream &operator<<(std::ostream &code, const ::QuantArg &quant_arg) { + code << "{" << static_cast(quant_arg.scale_) << ", " << quant_arg.zp_ << "}"; + return code; +} + +inline std::ostream &operator<<(std::ostream &code, const OpParameter &tile) { + code << "{ \"\"" + << ", " << tile.type_ << ", " << tile.thread_num_ << "}"; + return code; +} + +inline std::ostream &operator<<(std::ostream &code, PoolMode pool_mode) { + code << "(PoolMode)" + << "(" << static_cast(pool_mode) << ")"; + return code; +} + +inline std::ostream &operator<<(std::ostream &code, RoundMode round_mode) { + code << "(RoundMode)" + << "(" << static_cast(round_mode) << ")"; + return code; +} + +inline std::ostream &operator<<(std::ostream &code, ActType act_type) { + code << "(ActType)" + << "(" << static_cast(act_type) << ")"; + return code; +} + +inline std::ostream &operator<<(std::ostream &code, DataOrder data_order) { + if (data_order == RowMajor) { + code << "RowMajor"; + } else { + code << "ColMajor"; + } + return code; +} +} // namespace mindspore::lite::micro +#endif // LITE_MICRO_CODER_OPCODERS_SERIALIZERS_NNACL_STREAM_UTILS_H_ diff --git a/mindspore/lite/micro/coder/opcoders/serializers/serializer.h b/mindspore/lite/micro/coder/opcoders/serializers/serializer.h index 19a122f66d4..6f88619a6c7 100644 --- a/mindspore/lite/micro/coder/opcoders/serializers/serializer.h +++ b/mindspore/lite/micro/coder/opcoders/serializers/serializer.h @@ -22,6 +22,7 @@ #include #include "micro/coder/utils/print_utils.h" #include "micro/coder/allocator/allocator.h" +#include "micro/coder/opcoders/serializers/nnacl_serializer/nnacl_stream_utils.h" namespace mindspore::lite::micro {