upgrade Ascend software package 09 Sep 21

This commit is contained in:
yanghaoran 2021-09-09 19:29:40 +08:00
parent 5c72e9d7c6
commit 0ced8775c4
6 changed files with 1 additions and 444 deletions

@ -1 +1 @@
Subproject commit 6cc2d0293685edd22a1e3ef2a6af393779a0283d
Subproject commit 329eb8bbed9137a1ed6aca07ec68cdee6ae2975f

View File

@ -1,108 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test lazy adam """
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor, Parameter, context
from mindspore.common.api import _cell_graph_executor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import LazyAdam
from mindspore.ops import operations as P
@pytest.fixture(scope="module", autouse=True)
def setup_teardown():
context.set_context(enable_sparse=True)
yield
context.set_context(enable_sparse=False)
class Net(nn.Cell):
""" Net definition """
def __init__(self):
super(Net, self).__init__()
self.weight = Parameter(Tensor(np.ones([64, 10]).astype(np.float32)), name="weight")
self.bias = Parameter(Tensor(np.ones([10]).astype((np.float32))), name="bias")
self.matmul = P.MatMul()
self.biasAdd = P.BiasAdd()
def construct(self, x):
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
return x
class NetWithSparseGatherV2(nn.Cell):
""" NetWithSparseGatherV2 definition """
def __init__(self):
super(NetWithSparseGatherV2, self).__init__()
self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1")
self.weight2 = Parameter(Tensor(np.ones([2, 1, 2]).astype((np.float32))), name="weight2")
self.axis = 0
self.gather = P.SparseGatherV2()
def construct(self, indices, label):
return self.gather(self.weight1, indices, self.axis) + self.weight2
def test_lazy_adam_compile():
""" test lazy adam compile """
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_cell_graph_executor.compile(train_network, inputs, label)
def test_spares_lazy_adam_compile():
""" test sparse adam compile """
indices = Tensor(np.array([0, 1]).astype(np.int32))
label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
net = NetWithSparseGatherV2()
net.set_train()
optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
optimizer.target = 'CPU'
train_network = TrainOneStepCell(net, optimizer)
_cell_graph_executor.compile(train_network, indices, label)
def test_spares_lazy_adam():
""" test sparse adam"""
indices = Tensor(np.array([0, 1]).astype(np.int32))
label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
net = NetWithSparseGatherV2()
net.set_train()
optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
optimizer.target = 'Ascend'
train_network = TrainOneStepCell(net, optimizer)
_cell_graph_executor.compile(train_network, indices, label)
def test_lazy_adam_error():
net = Net()
with pytest.raises(ValueError):
LazyAdam(net.get_parameters(), learning_rate=-0.1)
with pytest.raises(TypeError):
LazyAdam(net.get_parameters(), learning_rate=0.1, beta1=2)

View File

@ -1,80 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test lazy adam """
import pytest
import numpy as np
from mindspore.nn.optim import LazyAdam, FTRL, Adam, ProximalAdagrad
import mindspore.nn as nn
from mindspore import Tensor, Parameter, context
from mindspore.ops import operations as P
@pytest.fixture(scope="module", autouse=True)
def setup_teardown():
context.set_context(enable_sparse=True)
yield
context.set_context(enable_sparse=False)
class NetWithSparseGatherV2(nn.Cell):
""" NetWithSparseGatherV2 definition """
def __init__(self):
super(NetWithSparseGatherV2, self).__init__()
self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1")
self.weight2 = Parameter(Tensor(np.ones([2, 1, 2]).astype((np.float32))), name="weight2")
self.axis = 0
self.gather = P.SparseGatherV2()
def construct(self, indices, label):
return self.gather(self.weight1, indices, self.axis) + self.weight2
def test_ftrl_target():
""" test_ftrl_target """
net = NetWithSparseGatherV2()
net.set_train()
optimizer = FTRL(net.trainable_params(), weight_decay=0.9, loss_scale=2.0)
if optimizer.target not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target))
def test_lazyadam_target():
""" test_lazyadam_target """
net = NetWithSparseGatherV2()
net.set_train()
optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
if optimizer.target not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target))
def test_adam_target():
""" test_adam_target """
net = NetWithSparseGatherV2()
net.set_train()
optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9)
if optimizer.target not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target))
def test_proximal_target():
""" test_proximal_target """
net = NetWithSparseGatherV2()
net.set_train()
optimizer = ProximalAdagrad(net.trainable_params(), weight_decay=0.9, loss_scale=1024.0)
if optimizer.target not in ('CPU', 'Ascend'):
raise ValueError("The value must be 'CPU' or 'Ascend', but got value {}".format(optimizer.target))

View File

@ -1,155 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Test nn.probability.distribution.gumbel.
"""
import numpy as np
import pytest
import mindspore.nn as nn
import mindspore.nn.probability.distribution as msd
from mindspore import dtype
from mindspore import Tensor
def test_gumbel_shape_errpr():
"""
Invalid shapes.
"""
with pytest.raises(ValueError):
msd.Gumbel([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
def test_type():
with pytest.raises(TypeError):
msd.Gumbel(0., 1., dtype=dtype.int32)
def test_name():
with pytest.raises(TypeError):
msd.Gumbel(0., 1., name=1.0)
def test_seed():
with pytest.raises(TypeError):
msd.Gumbel(0., 1., seed='seed')
def test_scale():
with pytest.raises(ValueError):
msd.Gumbel(0., 0.)
with pytest.raises(ValueError):
msd.Gumbel(0., -1.)
def test_arguments():
"""
args passing during initialization.
"""
l = msd.Gumbel([3.0], [4.0], dtype=dtype.float32)
assert isinstance(l, msd.Distribution)
class GumbelProb(nn.Cell):
"""
Gumbel distribution: initialize with loc/scale.
"""
def __init__(self):
super(GumbelProb, self).__init__()
self.gumbel = msd.Gumbel(3.0, 4.0, dtype=dtype.float32)
def construct(self, value):
prob = self.gumbel.prob(value)
log_prob = self.gumbel.log_prob(value)
cdf = self.gumbel.cdf(value)
log_cdf = self.gumbel.log_cdf(value)
sf = self.gumbel.survival_function(value)
log_sf = self.gumbel.log_survival(value)
return prob + log_prob + cdf + log_cdf + sf + log_sf
def test_gumbel_prob():
"""
Test probability functions: passing value through construct.
"""
net = GumbelProb()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)
class KL(nn.Cell):
"""
Test kl_loss.
"""
def __init__(self):
super(KL, self).__init__()
self.gumbel = msd.Gumbel(3.0, 4.0)
def construct(self, mu, s):
kl = self.gumbel.kl_loss('Gumbel', mu, s)
cross_entropy = self.gumbel.cross_entropy('Gumbel', mu, s)
return kl + cross_entropy
def test_kl_cross_entropy():
"""
Test kl_loss and cross_entropy.
"""
from mindspore import context
context.set_context(device_target="Ascend")
net = KL()
loc_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
scale_b = Tensor(np.array([1.0]).astype(np.float32), dtype=dtype.float32)
ans = net(loc_b, scale_b)
assert isinstance(ans, Tensor)
class GumbelBasics(nn.Cell):
"""
Test class: basic loc/scale function.
"""
def __init__(self):
super(GumbelBasics, self).__init__()
self.gumbel = msd.Gumbel(3.0, 4.0, dtype=dtype.float32)
def construct(self):
mean = self.gumbel.mean()
sd = self.gumbel.sd()
mode = self.gumbel.mode()
entropy = self.gumbel.entropy()
return mean + sd + mode + entropy
def test_bascis():
"""
Test mean/sd/mode/entropy functionality of Gumbel.
"""
net = GumbelBasics()
ans = net()
assert isinstance(ans, Tensor)
class GumbelConstruct(nn.Cell):
"""
Gumbel distribution: going through construct.
"""
def __init__(self):
super(GumbelConstruct, self).__init__()
self.gumbel = msd.Gumbel(3.0, 4.0)
def construct(self, value):
prob = self.gumbel('prob', value)
prob1 = self.gumbel.prob(value)
return prob + prob1
def test_gumbel_construct():
"""
Test probability function going through construct.
"""
net = GumbelConstruct()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor)

View File

@ -1,38 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" Test Dropout """
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
context.set_context(device_target="Ascend")
def test_check_dropout_3():
Tensor(np.ones([20, 16, 50]).astype(np.int32))
with pytest.raises(ValueError):
nn.Dropout(3)
class Net_dropout(nn.Cell):
def __init__(self):
super(Net_dropout, self).__init__()
self.dropout = nn.Dropout(0.5)
def construct(self, x):
return self.dropout(x)

View File

@ -1,62 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" test image gradients """
import numpy as np
import pytest
import mindspore.common.dtype as mstype
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import _cell_graph_executor
from mindspore.common.api import ms_function
context.set_context(device_target="Ascend")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.image_gradients = nn.ImageGradients()
@ms_function
def construct(self, x):
return self.image_gradients(x)
def test_compile():
# input shape 1 x 1 x 2 x 2
image = Tensor(np.array([[[[1, 2], [3, 4]]]]), dtype=mstype.int32)
net = Net()
_cell_graph_executor.compile(net, image)
def test_compile_multi_channel():
# input shape 4 x 2 x 2 x 2
dtype = mstype.int32
image = Tensor(np.array([[[[1, 2], [3, 4]], [[5, 6], [7, 8]]],
[[[3, 5], [7, 9]], [[11, 13], [15, 17]]],
[[[5, 10], [15, 20]], [[25, 30], [35, 40]]],
[[[10, 20], [30, 40]], [[50, 60], [70, 80]]]]), dtype=dtype)
net = Net()
_cell_graph_executor.compile(net, image)
def test_invalid_5d_input():
dtype = mstype.float32
image = Tensor(np.random.random([4, 1, 16, 16, 1]), dtype=dtype)
net = Net()
with pytest.raises(ValueError):
_cell_graph_executor.compile(net, image)