forked from mindspore-Ecosystem/mindspore
update control flow int adamweightdecay for bert
This commit is contained in:
parent
da7ce4a2e9
commit
0c97835662
2
akg
2
akg
|
@ -1 +1 @@
|
|||
Subproject commit ae997e27b217d6c8c7a6cbf6ef812186835d2bdf
|
||||
Subproject commit f4f118a2debd2eacc3f2ab6dc31846f1e04d6e13
|
|
@ -88,7 +88,6 @@ __global__ void IsFinite(const size_t size, const half* input, bool* out) {
|
|||
|
||||
template <typename T>
|
||||
__global__ void FloatStatus(const size_t size, const T* input, T* out) {
|
||||
out[0] = 0;
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
|
||||
if (isinf(input[pos]) != 0 || isnan(input[pos])) {
|
||||
out[0] = 1;
|
||||
|
@ -98,7 +97,6 @@ __global__ void FloatStatus(const size_t size, const T* input, T* out) {
|
|||
}
|
||||
template <>
|
||||
__global__ void FloatStatus(const size_t size, const half* input, half* out) {
|
||||
out[0] = 0;
|
||||
for (size_t pos = blockIdx.x * blockDim.x + threadIdx.x; pos < (size); pos += blockDim.x * gridDim.x) {
|
||||
if (__hisinf(input[pos]) != 0 || __hisnan(input[pos])) {
|
||||
out[0] = 1;
|
||||
|
|
|
@ -24,6 +24,7 @@
|
|||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/float_status_impl.cuh"
|
||||
#include "backend/kernel_compiler/gpu/cuda_impl/slice_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
@ -46,6 +47,7 @@ class FloatStatusGpuKernel : public GpuKernel {
|
|||
switch (kernel_name_) {
|
||||
case OP_STATUS: {
|
||||
T *output = GetDeviceAddress<T>(outputs, 0);
|
||||
FillDeviceArray(outputs[0]->size / sizeof(T), output, 0.0f, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
CalFloatStatus(input_size_ / sizeof(T), input, output, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
|
|
|
@ -32,7 +32,8 @@ from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecay
|
|||
from mindspore import log as logger
|
||||
from mindspore.common import set_seed
|
||||
from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell, \
|
||||
BertTrainAccumulateStepsWithLossScaleCell
|
||||
BertTrainAccumulateStepsWithLossScaleCell, BertTrainOneStepWithLossScaleCellForAdam, \
|
||||
AdamWeightDecayForBert
|
||||
from src.dataset import create_bert_dataset
|
||||
from src.config import cfg, bert_net_cfg
|
||||
from src.utils import LossCallBack, BertLearningRate
|
||||
|
@ -83,8 +84,10 @@ def _get_optimizer(args_opt, network):
|
|||
group_params = [{'params': decay_params, 'weight_decay': cfg.AdamWeightDecay.weight_decay},
|
||||
{'params': other_params, 'weight_decay': 0.0},
|
||||
{'order_params': params}]
|
||||
|
||||
optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=cfg.AdamWeightDecay.eps)
|
||||
if args_opt.enable_lossscale == "true":
|
||||
optimizer = AdamWeightDecayForBert(group_params, learning_rate=lr_schedule, eps=cfg.AdamWeightDecay.eps)
|
||||
else:
|
||||
optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=cfg.AdamWeightDecay.eps)
|
||||
else:
|
||||
raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecay]".
|
||||
format(cfg.optimizer))
|
||||
|
@ -206,8 +209,12 @@ def run_pretrain():
|
|||
scale_window=cfg.scale_window)
|
||||
|
||||
if args_opt.accumulation_steps <= 1:
|
||||
net_with_grads = BertTrainOneStepWithLossScaleCell(net_with_loss, optimizer=optimizer,
|
||||
scale_update_cell=update_cell)
|
||||
if cfg.optimizer == 'AdamWeightDecay':
|
||||
net_with_grads = BertTrainOneStepWithLossScaleCellForAdam(net_with_loss, optimizer=optimizer,
|
||||
scale_update_cell=update_cell)
|
||||
else:
|
||||
net_with_grads = BertTrainOneStepWithLossScaleCell(net_with_loss, optimizer=optimizer,
|
||||
scale_update_cell=update_cell)
|
||||
else:
|
||||
accumulation_steps = args_opt.accumulation_steps
|
||||
net_with_grads = BertTrainAccumulateStepsWithLossScaleCell(net_with_loss, optimizer=optimizer,
|
||||
|
|
|
@ -21,13 +21,13 @@ from .bert_model import BertAttention, BertConfig, BertEncoderCell, BertModel, \
|
|||
BertOutput, BertSelfAttention, BertTransformer, EmbeddingLookup, \
|
||||
EmbeddingPostprocessor, RelaPosEmbeddingsGenerator, RelaPosMatrixGenerator, \
|
||||
SaturateCast, CreateAttentionMaskFromInputMask
|
||||
|
||||
from .adam import AdamWeightDecayForBert
|
||||
__all__ = [
|
||||
"BertNetworkWithLoss", "BertPreTraining", "BertPretrainingLoss",
|
||||
"GetMaskedLMOutput", "GetNextSentenceOutput", "BertTrainOneStepCell",
|
||||
"BertTrainOneStepWithLossScaleCell", "BertTrainAccumulateStepsWithLossScaleCell",
|
||||
"BertAttention", "BertConfig", "BertEncoderCell", "BertModel", "BertOutput",
|
||||
"BertSelfAttention", "BertTransformer", "EmbeddingLookup",
|
||||
"EmbeddingPostprocessor", "RelaPosEmbeddingsGenerator",
|
||||
"EmbeddingPostprocessor", "RelaPosEmbeddingsGenerator", "AdamWeightDecayForBert",
|
||||
"RelaPosMatrixGenerator", "SaturateCast", "CreateAttentionMaskFromInputMask"
|
||||
]
|
||||
|
|
|
@ -0,0 +1,307 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""AdamWeightDecayForBert, a customized Adam for bert. Input: gradient, overflow flag."""
|
||||
import numpy as np
|
||||
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore._checkparam import Validator as validator
|
||||
from mindspore._checkparam import Rel
|
||||
from mindspore.nn.optim.optimizer import Optimizer
|
||||
|
||||
_adam_opt = C.MultitypeFuncGraph("adam_opt")
|
||||
_scaler_one = Tensor(1, mstype.int32)
|
||||
_scaler_ten = Tensor(10, mstype.float32)
|
||||
|
||||
|
||||
@_adam_opt.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "Tensor", "Tensor",
|
||||
"Tensor", "Bool", "Bool")
|
||||
def _update_run_op(beta1, beta2, eps, lr, overflow, weight_decay, param, m, v, gradient, decay_flag, optim_filter):
|
||||
"""
|
||||
Update parameters.
|
||||
|
||||
Args:
|
||||
beta1 (Tensor): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
|
||||
beta2 (Tensor): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
|
||||
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
|
||||
lr (Tensor): Learning rate.
|
||||
overflow (Tensor): Whether overflow occurs.
|
||||
weight_decay (Number): Weight decay. Should be equal to or greater than 0.
|
||||
param (Tensor): Parameters.
|
||||
m (Tensor): m value of parameters.
|
||||
v (Tensor): v value of parameters.
|
||||
gradient (Tensor): Gradient of parameters.
|
||||
decay_flag (bool): Applies weight decay or not.
|
||||
optim_filter (bool): Applies parameter update or not.
|
||||
|
||||
Returns:
|
||||
Tensor, the new value of v after updating.
|
||||
"""
|
||||
if optim_filter:
|
||||
op_mul = P.Mul()
|
||||
op_square = P.Square()
|
||||
op_sqrt = P.Sqrt()
|
||||
op_cast = P.Cast()
|
||||
op_reshape = P.Reshape()
|
||||
op_shape = P.Shape()
|
||||
op_select = P.Select()
|
||||
|
||||
param_fp32 = op_cast(param, mstype.float32)
|
||||
m_fp32 = op_cast(m, mstype.float32)
|
||||
v_fp32 = op_cast(v, mstype.float32)
|
||||
gradient_fp32 = op_cast(gradient, mstype.float32)
|
||||
|
||||
cond = op_cast(F.fill(mstype.int32, op_shape(m_fp32), 1) * op_reshape(overflow, (())), mstype.bool_)
|
||||
next_m = op_mul(beta1, m_fp32) + op_select(cond, m_fp32,\
|
||||
op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32) - beta1, gradient_fp32))
|
||||
|
||||
next_v = op_mul(beta2, v_fp32) + op_select(cond, v_fp32,\
|
||||
op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32) - beta2, op_square(gradient_fp32)))
|
||||
|
||||
update = next_m / (eps + op_sqrt(next_v))
|
||||
if decay_flag:
|
||||
update = op_mul(weight_decay, param_fp32) + update
|
||||
|
||||
update_with_lr = op_mul(lr, update)
|
||||
zeros = F.fill(mstype.float32, op_shape(param_fp32), 0)
|
||||
next_param = param_fp32 - op_select(cond, zeros, op_reshape(update_with_lr, op_shape(param_fp32)))
|
||||
|
||||
next_param = F.depend(next_param, F.assign(param, op_cast(next_param, F.dtype(param))))
|
||||
next_param = F.depend(next_param, F.assign(m, op_cast(next_m, F.dtype(m))))
|
||||
next_param = F.depend(next_param, F.assign(v, op_cast(next_v, F.dtype(v))))
|
||||
|
||||
return op_cast(next_param, F.dtype(param))
|
||||
return gradient
|
||||
|
||||
|
||||
@_adam_opt.register("Function", "Function", "Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
|
||||
"Tensor", "Tensor", "Tensor", "Tensor", "RowTensor", "Tensor", "Tensor", "Tensor", "Bool", "Bool")
|
||||
def _run_opt_with_sparse(opt, sparse_opt, push, pull, use_locking, use_nesterov, target, beta1_power,
|
||||
beta2_power, beta1, beta2, eps, lr, gradient, param, m, v, ps_parameter, cache_enable):
|
||||
"""Apply sparse adam optimizer to the weight parameter when the gradient is sparse."""
|
||||
success = True
|
||||
indices = gradient.indices
|
||||
values = gradient.values
|
||||
if ps_parameter and not cache_enable:
|
||||
op_shape = P.Shape()
|
||||
shapes = (op_shape(param), op_shape(m), op_shape(v),
|
||||
op_shape(beta1_power), op_shape(beta2_power), op_shape(lr), op_shape(beta1),
|
||||
op_shape(beta2), op_shape(eps), op_shape(values), op_shape(indices))
|
||||
success = F.depend(success, pull(push((beta1_power, beta2_power, lr, beta1, beta2,
|
||||
eps, values, indices), shapes), param))
|
||||
return success
|
||||
|
||||
if not target:
|
||||
success = F.depend(success, sparse_opt(param, m, v, beta1_power, beta2_power, lr, beta1, beta2,
|
||||
eps, values, indices))
|
||||
else:
|
||||
op_mul = P.Mul()
|
||||
op_square = P.Square()
|
||||
op_sqrt = P.Sqrt()
|
||||
scatter_add = P.ScatterAdd(use_locking)
|
||||
|
||||
assign_m = F.assign(m, op_mul(beta1, m))
|
||||
assign_v = F.assign(v, op_mul(beta2, v))
|
||||
|
||||
grad_indices = gradient.indices
|
||||
grad_value = gradient.values
|
||||
|
||||
next_m = scatter_add(m,
|
||||
grad_indices,
|
||||
op_mul(F.tuple_to_array((1.0,)) - beta1, grad_value))
|
||||
|
||||
next_v = scatter_add(v,
|
||||
grad_indices,
|
||||
op_mul(F.tuple_to_array((1.0,)) - beta2, op_square(grad_value)))
|
||||
|
||||
if use_nesterov:
|
||||
m_temp = next_m * _scaler_ten
|
||||
assign_m_nesterov = F.assign(m, op_mul(beta1, next_m))
|
||||
div_value = scatter_add(m,
|
||||
op_mul(grad_indices, _scaler_one),
|
||||
op_mul(F.tuple_to_array((1.0,)) - beta1, grad_value))
|
||||
param_update = div_value / (op_sqrt(next_v) + eps)
|
||||
|
||||
m_recover = F.assign(m, m_temp / _scaler_ten)
|
||||
|
||||
F.control_depend(m_temp, assign_m_nesterov)
|
||||
F.control_depend(assign_m_nesterov, div_value)
|
||||
F.control_depend(param_update, m_recover)
|
||||
else:
|
||||
param_update = next_m / (op_sqrt(next_v) + eps)
|
||||
|
||||
lr_t = lr * op_sqrt(1 - beta2_power) / (1 - beta1_power)
|
||||
|
||||
next_param = param - lr_t * param_update
|
||||
|
||||
F.control_depend(assign_m, next_m)
|
||||
F.control_depend(assign_v, next_v)
|
||||
|
||||
success = F.depend(success, F.assign(param, next_param))
|
||||
success = F.depend(success, F.assign(m, next_m))
|
||||
success = F.depend(success, F.assign(v, next_v))
|
||||
|
||||
return success
|
||||
|
||||
|
||||
@_adam_opt.register("Function", "Function", "Function", "Function", "Bool", "Bool", "Bool", "Tensor", "Tensor",
|
||||
"Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Bool", "Bool")
|
||||
def _run_opt_with_one_number(opt, sparse_opt, push, pull, use_locking, use_nesterov, target,
|
||||
beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, param,
|
||||
moment1, moment2, ps_parameter, cache_enable):
|
||||
"""Apply adam optimizer to the weight parameter using Tensor."""
|
||||
success = True
|
||||
if ps_parameter and not cache_enable:
|
||||
op_shape = P.Shape()
|
||||
success = F.depend(success, pull(push((beta1_power, beta2_power, lr, beta1, beta2, eps, gradient),
|
||||
(op_shape(param), op_shape(moment1), op_shape(moment2))), param))
|
||||
else:
|
||||
success = F.depend(success, opt(param, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2,
|
||||
eps, gradient))
|
||||
return success
|
||||
|
||||
|
||||
@_adam_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
|
||||
"Tensor", "Tensor")
|
||||
def _run_off_load_opt(opt, beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, param, moment1, moment2):
|
||||
"""Apply AdamOffload optimizer to the weight parameter using Tensor."""
|
||||
success = True
|
||||
delat_param = opt(moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2, eps, gradient)
|
||||
success = F.depend(success, F.assign_add(param, delat_param))
|
||||
return success
|
||||
|
||||
|
||||
def _check_param_value(beta1, beta2, eps, prim_name):
|
||||
"""Check the type of inputs."""
|
||||
validator.check_value_type("beta1", beta1, [float], prim_name)
|
||||
validator.check_value_type("beta2", beta2, [float], prim_name)
|
||||
validator.check_value_type("eps", eps, [float], prim_name)
|
||||
validator.check_float_range(beta1, 0.0, 1.0, Rel.INC_NEITHER, "beta1", prim_name)
|
||||
validator.check_float_range(beta2, 0.0, 1.0, Rel.INC_NEITHER, "beta2", prim_name)
|
||||
validator.check_positive_float(eps, "eps", prim_name)
|
||||
|
||||
class AdamWeightDecayForBert(Optimizer):
|
||||
"""
|
||||
Implements the Adam algorithm to fix the weight decay.
|
||||
|
||||
Note:
|
||||
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
|
||||
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
|
||||
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
|
||||
|
||||
To improve parameter groups performance, the customized order of parameters can be supported.
|
||||
|
||||
Args:
|
||||
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
|
||||
the element in `params` must be class `Parameter`. When the `params` is a list of `dict`, the "params",
|
||||
"lr", "weight_decay" and "order_params" are the keys can be parsed.
|
||||
|
||||
- params: Required. The value must be a list of `Parameter`.
|
||||
|
||||
- lr: Optional. If "lr" is in the keys, the value of the corresponding learning rate will be used.
|
||||
If not, the `learning_rate` in the API will be used.
|
||||
|
||||
- weight_decay: Optional. If "weight_decay" is in the keys, the value of the corresponding weight decay
|
||||
will be used. If not, the `weight_decay` in the API will be used.
|
||||
|
||||
- order_params: Optional. If "order_params" is in the keys, the value must be the order of parameters and
|
||||
the order will be followed in the optimizer. There are no other keys in the `dict` and the parameters
|
||||
which in the 'order_params' must be in one of group parameters.
|
||||
|
||||
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning rate.
|
||||
When the learning_rate is an Iterable or a Tensor in a 1D dimension, use the dynamic learning rate, then
|
||||
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
|
||||
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
|
||||
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero
|
||||
dimension, use fixed learning rate. Other cases are not supported. The float learning rate must be
|
||||
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
|
||||
Default: 1e-3.
|
||||
beta1 (float): The exponential decay rate for the 1st moment estimations. Default: 0.9.
|
||||
Should be in range (0.0, 1.0).
|
||||
beta2 (float): The exponential decay rate for the 2nd moment estimations. Default: 0.999.
|
||||
Should be in range (0.0, 1.0).
|
||||
eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
|
||||
Should be greater than 0.
|
||||
weight_decay (float): Weight decay (L2 penalty). It must be equal to or greater than 0. Default: 0.0.
|
||||
|
||||
Inputs:
|
||||
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
|
||||
- **overflow** (tuple[Tensor]) - The overflow flag in dynamiclossscale.
|
||||
|
||||
Outputs:
|
||||
tuple[bool], all elements are True.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> net = Net()
|
||||
>>> #1) All parameters use the same learning rate and weight decay
|
||||
>>> optim = nn.AdamWeightDecay(params=net.trainable_params())
|
||||
>>>
|
||||
>>> #2) Use parameter groups and set different values
|
||||
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
|
||||
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
|
||||
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
|
||||
... {'params': no_conv_params, 'lr': 0.01},
|
||||
... {'order_params': net.trainable_params()}]
|
||||
>>> optim = nn.AdamWeightDecay(group_params, learning_rate=0.1, weight_decay=0.0)
|
||||
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
|
||||
>>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
|
||||
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
|
||||
>>>
|
||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
||||
>>> model = Model(net, loss_fn=loss, optimizer=optim)
|
||||
"""
|
||||
def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0):
|
||||
super(AdamWeightDecayForBert, self).__init__(learning_rate, params, weight_decay)
|
||||
_check_param_value(beta1, beta2, eps, self.cls_name)
|
||||
self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
|
||||
self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
|
||||
self.eps = Tensor(np.array([eps]).astype(np.float32))
|
||||
self.moments1 = self.parameters.clone(prefix="adam_m", init='zeros')
|
||||
self.moments2 = self.parameters.clone(prefix="adam_v", init='zeros')
|
||||
self.hyper_map = C.HyperMap()
|
||||
self.op_select = P.Select()
|
||||
self.op_cast = P.Cast()
|
||||
self.op_reshape = P.Reshape()
|
||||
self.op_shape = P.Shape()
|
||||
|
||||
def construct(self, gradients, overflow):
|
||||
"""AdamWeightDecayForBert"""
|
||||
lr = self.get_lr()
|
||||
cond = self.op_cast(F.fill(mstype.int32, self.op_shape(self.beta1), 1) *\
|
||||
self.op_reshape(overflow, (())), mstype.bool_)
|
||||
beta1 = self.op_select(cond, self.op_cast(F.tuple_to_array((1.0,)), mstype.float32), self.beta1)
|
||||
beta2 = self.op_select(cond, self.op_cast(F.tuple_to_array((1.0,)), mstype.float32), self.beta2)
|
||||
if self.is_group:
|
||||
if self.is_group_lr:
|
||||
optim_result = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps),
|
||||
lr, self.weight_decay, self.parameters, self.moments1, self.moments2,
|
||||
gradients, self.decay_flags, self.optim_filter)
|
||||
else:
|
||||
optim_result = self.hyper_map(F.partial(_adam_opt, beta1, beta2, self.eps, lr, overflow),
|
||||
self.weight_decay, self.parameters, self.moments1, self.moments2,
|
||||
gradients, self.decay_flags, self.optim_filter)
|
||||
else:
|
||||
optim_result = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps, lr, self.weight_decay),
|
||||
self.parameters, self.moments1, self.moments2,
|
||||
gradients, self.decay_flags, self.optim_filter)
|
||||
if self.use_parallel:
|
||||
self.broadcast_params(optim_result)
|
||||
return optim_result
|
|
@ -440,6 +440,120 @@ class BertTrainOneStepWithLossScaleCell(nn.Cell):
|
|||
ret = (loss, cond, scaling_sens)
|
||||
return F.depend(ret, succ)
|
||||
|
||||
class BertTrainOneStepWithLossScaleCellForAdam(nn.Cell):
|
||||
"""
|
||||
Encapsulation class of bert network training.
|
||||
|
||||
Append an optimizer to the training network after that the construct
|
||||
function can be called to create the backward graph.
|
||||
Different from BertTrainOneStepWithLossScaleCell, the optimizer takes the overflow
|
||||
condition as input.
|
||||
|
||||
Args:
|
||||
network (Cell): The training network. Note that loss function should have been added.
|
||||
optimizer (Optimizer): Optimizer for updating the weights.
|
||||
scale_update_cell (Cell): Cell to do the loss scale. Default: None.
|
||||
"""
|
||||
def __init__(self, network, optimizer, scale_update_cell=None):
|
||||
super(BertTrainOneStepWithLossScaleCellForAdam, self).__init__(auto_prefix=False)
|
||||
self.network = network
|
||||
self.network.set_grad()
|
||||
self.weights = optimizer.parameters
|
||||
self.optimizer = optimizer
|
||||
self.grad = C.GradOperation(get_by_list=True,
|
||||
sens_param=True)
|
||||
self.reducer_flag = False
|
||||
self.allreduce = P.AllReduce()
|
||||
self.parallel_mode = context.get_auto_parallel_context("parallel_mode")
|
||||
if self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL]:
|
||||
self.reducer_flag = True
|
||||
self.grad_reducer = F.identity
|
||||
self.degree = 1
|
||||
if self.reducer_flag:
|
||||
self.degree = get_group_size()
|
||||
self.grad_reducer = DistributedGradReducer(optimizer.parameters, False, self.degree)
|
||||
self.is_distributed = (self.parallel_mode != ParallelMode.STAND_ALONE)
|
||||
self.cast = P.Cast()
|
||||
if context.get_context("device_target") == "GPU":
|
||||
self.gpu_target = True
|
||||
self.float_status = P.FloatStatus()
|
||||
self.addn = P.AddN()
|
||||
self.reshape = P.Reshape()
|
||||
else:
|
||||
self.gpu_target = False
|
||||
self.alloc_status = P.NPUAllocFloatStatus()
|
||||
self.get_status = P.NPUGetFloatStatus()
|
||||
self.clear_before_grad = P.NPUClearFloatStatus()
|
||||
self.reduce_sum = P.ReduceSum(keep_dims=False)
|
||||
self.depend_parameter_use = P.ControlDepend(depend_mode=1)
|
||||
self.base = Tensor(1, mstype.float32)
|
||||
self.less_equal = P.LessEqual()
|
||||
self.hyper_map = C.HyperMap()
|
||||
self.loss_scale = None
|
||||
self.loss_scaling_manager = scale_update_cell
|
||||
if scale_update_cell:
|
||||
self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32))
|
||||
|
||||
@C.add_flags(has_effect=True)
|
||||
def construct(self,
|
||||
input_ids,
|
||||
input_mask,
|
||||
token_type_id,
|
||||
next_sentence_labels,
|
||||
masked_lm_positions,
|
||||
masked_lm_ids,
|
||||
masked_lm_weights,
|
||||
sens=None):
|
||||
"""Defines the computation performed."""
|
||||
weights = self.weights
|
||||
loss = self.network(input_ids,
|
||||
input_mask,
|
||||
token_type_id,
|
||||
next_sentence_labels,
|
||||
masked_lm_positions,
|
||||
masked_lm_ids,
|
||||
masked_lm_weights)
|
||||
if sens is None:
|
||||
scaling_sens = self.loss_scale
|
||||
else:
|
||||
scaling_sens = sens
|
||||
init = False
|
||||
if not self.gpu_target:
|
||||
# alloc status and clear should be right before gradoperation
|
||||
init = self.alloc_status()
|
||||
self.clear_before_grad(init)
|
||||
grads = self.grad(self.network, weights)(input_ids,
|
||||
input_mask,
|
||||
token_type_id,
|
||||
next_sentence_labels,
|
||||
masked_lm_positions,
|
||||
masked_lm_ids,
|
||||
masked_lm_weights,
|
||||
self.cast(scaling_sens,
|
||||
mstype.float32))
|
||||
# apply grad reducer on grads
|
||||
grads = self.grad_reducer(grads)
|
||||
grads = self.hyper_map(F.partial(grad_scale, scaling_sens * self.degree), grads)
|
||||
grads = self.hyper_map(F.partial(clip_grad, GRADIENT_CLIP_TYPE, GRADIENT_CLIP_VALUE), grads)
|
||||
if not self.gpu_target:
|
||||
self.get_status(init)
|
||||
flag_sum = self.reduce_sum(init, (0,))
|
||||
else:
|
||||
flag_sum = self.hyper_map(F.partial(_grad_overflow), grads)
|
||||
flag_sum = self.addn(flag_sum)
|
||||
flag_sum = self.reshape(flag_sum, (()))
|
||||
if self.is_distributed:
|
||||
# sum overflow flag over devices
|
||||
flag_reduce = self.allreduce(flag_sum)
|
||||
cond = self.less_equal(self.base, flag_reduce)
|
||||
else:
|
||||
cond = self.less_equal(self.base, flag_sum)
|
||||
overflow = cond
|
||||
if self.loss_scaling_manager is not None:
|
||||
overflow = self.loss_scaling_manager(scaling_sens, cond)
|
||||
succ = self.optimizer(grads, overflow)
|
||||
ret = (loss, cond, scaling_sens)
|
||||
return F.depend(ret, succ)
|
||||
|
||||
cast = P.Cast()
|
||||
update_accu_grads = C.MultitypeFuncGraph("update_accu_grads")
|
||||
|
|
Loading…
Reference in New Issue