forked from mindspore-Ecosystem/mindspore
!12548 fix some error message and api bug of BCEWithLogitsLoss.
From: @liu_xiao_93 Reviewed-by: @liangchenghui,@wuxuejian Signed-off-by: @liangchenghui,@wuxuejian
This commit is contained in:
commit
095d7fb877
|
@ -834,14 +834,14 @@ class BCEWithLogitsLoss(_Loss):
|
|||
|
||||
.. math::
|
||||
\ell(x, y) = \begin{cases}
|
||||
L, & \text{if reduction} = \text{`none';}\\
|
||||
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
|
||||
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
|
||||
L, & \text{if reduction} = \text{'none';}\\
|
||||
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
|
||||
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
|
||||
\end{cases}
|
||||
|
||||
Args:
|
||||
reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none".
|
||||
If "none", do not perform reduction. Default:`mean`.
|
||||
reduction (str): Type of reduction to be applied to loss. The optional values are 'mean', 'sum', and 'none'.
|
||||
If 'none', do not perform reduction. Default:'mean'.
|
||||
weight (Tensor, optional): A rescaling weight applied to the loss of each batch element.
|
||||
If not None, it must can be broadcast to a tensor with shape of `predict`,
|
||||
data type must be float16 or float32. Default: None.
|
||||
|
@ -854,7 +854,7 @@ class BCEWithLogitsLoss(_Loss):
|
|||
- **target** (Tensor) - Ground truth label. Has the same data type and shape with `predict`.
|
||||
|
||||
Outputs:
|
||||
Scalar. If reduction is "none", it's a tensor with the same shape and type as input `predict`.
|
||||
Scalar. If reduction is 'none', it's a tensor with the same shape and type as input `predict`.
|
||||
|
||||
Raises:
|
||||
TypeError: If data type of `predict` or `target` is neither float16 nor float32.
|
||||
|
|
|
@ -1217,7 +1217,7 @@ def get_bprop_ce_with_logits_loss(self):
|
|||
reduction = self.reduction
|
||||
mul = P.Mul()
|
||||
sigmoid = P.Sigmoid()
|
||||
add = P.TensorAdd()
|
||||
add = P.Add()
|
||||
sub = P.Sub()
|
||||
size = P.Size()
|
||||
|
||||
|
|
|
@ -3725,14 +3725,14 @@ class BCEWithLogitsLoss(PrimitiveWithInfer):
|
|||
|
||||
.. math::
|
||||
\ell(x, y) = \begin{cases}
|
||||
L, & \text{if reduction} = \text{`none';}\\
|
||||
\operatorname{mean}(L), & \text{if reduction} = \text{`mean';}\\
|
||||
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.}
|
||||
L, & \text{if reduction} = \text{'none';}\\
|
||||
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
|
||||
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
|
||||
\end{cases}
|
||||
|
||||
Args:
|
||||
reduction (str): Type of reduction to be applied to loss. The optional values are "mean", "sum", and "none".
|
||||
If "none", do not perform reduction. Default:`mean`.
|
||||
reduction (str): Type of reduction to be applied to loss. The optional values are 'mean', 'sum', and 'none'.
|
||||
If 'none', do not perform reduction. Default:'mean'.
|
||||
|
||||
Inputs:
|
||||
- **predict** (Tensor) - Input logits. Data type must be float16 or float32.
|
||||
|
@ -3745,7 +3745,7 @@ class BCEWithLogitsLoss(PrimitiveWithInfer):
|
|||
Data type must be float16 or float32.
|
||||
|
||||
Outputs:
|
||||
Scalar. If reduction is "none", it's a tensor with the same shape and type as input `predict`.
|
||||
Scalar. If reduction is 'none', it's a tensor with the same shape and type as input `predict`.
|
||||
|
||||
Raises:
|
||||
TypeError: If data type of any input is neither float16 nor float32.
|
||||
|
@ -3785,7 +3785,7 @@ class BCEWithLogitsLoss(PrimitiveWithInfer):
|
|||
for i, v in enumerate(reversed_pos_shape):
|
||||
if v not in (reversed_target[i], 1):
|
||||
raise ValueError(f"For {self.name}, shapes can not broadcast. "
|
||||
f"predict: {tuple(predict)}, weight shape {tuple(weight)}.")
|
||||
f"predict: {tuple(predict)}, weight shape {tuple(pos_weight)}.")
|
||||
|
||||
if self.reduction in ('mean', 'sum'):
|
||||
shape = []
|
||||
|
|
Loading…
Reference in New Issue