!1712 clean pylint warnings of parallel test cases

Merge pull request !1712 from yihuaijie/master
This commit is contained in:
mindspore-ci-bot 2020-05-30 15:39:49 +08:00 committed by Gitee
commit 0920660ecc
3 changed files with 10 additions and 14 deletions

View File

@ -15,7 +15,6 @@
import os
import numpy as np
import pytest
import mindspore.common.dtype as mstype
import mindspore.context as context
@ -113,8 +112,7 @@ class ResidualBlock(nn.Cell):
def __init__(self,
in_channels,
out_channels,
stride=1,
momentum=0.9):
stride=1):
super(ResidualBlock, self).__init__()
out_chls = out_channels // self.expansion

View File

@ -39,10 +39,10 @@ class MindDataSet(MindData):
if self._size < self._iter_num:
raise StopIteration
self._iter_num += 1
next = []
for shape, type in zip(self._output_shapes, self._np_types):
next.append(Tensor(np.ones(shape).astype(type)))
return tuple(next)
next_ = []
for shape, type_ in zip(self._output_shapes, self._np_types):
next_.append(Tensor(np.ones(shape).astype(type_)))
return tuple(next_)
class Net(nn.Cell):
@ -53,8 +53,8 @@ class Net(nn.Cell):
self.matmul = P.MatMul()
self.add = P.TensorAdd()
def construct(self, input):
output = self.add(self.matmul(input, self.weight), self.bias)
def construct(self, input_):
output = self.add(self.matmul(input_, self.weight), self.bias)
return output
@ -67,9 +67,9 @@ class NetFP16(nn.Cell):
self.add = P.TensorAdd()
self.cast = P.Cast()
def construct(self, input):
def construct(self, input_):
output = self.cast(
self.add(self.matmul(self.cast(input, mstype.float16), self.cast(self.weight, mstype.float16)),
self.add(self.matmul(self.cast(input_, mstype.float16), self.cast(self.weight, mstype.float16)),
self.cast(self.bias, mstype.float16)), mstype.float32)
return output
@ -107,5 +107,5 @@ def test_auto_parallel_flag():
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
model = Model(net, loss_fn=loss, optimizer=optimizer, metrics=None, loss_scale_manager=scale_manager)
model.train(2, dataset)
assert(model._train_network.get_flags()["auto_parallel"] == True)
assert model._train_network.get_flags()["auto_parallel"]
context.reset_auto_parallel_context()

View File

@ -17,9 +17,7 @@ import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from tests.ut.python.ops.test_math_ops import VirtualLoss