!3266 add resnext50 GPU script and change the foler path of resnext50 in model zoo

Merge pull request !3266 from zhaoting/ResNext50
This commit is contained in:
mindspore-ci-bot 2020-07-22 17:37:54 +08:00 committed by Gitee
commit 031ce81555
13 changed files with 217 additions and 69 deletions

View File

@ -90,10 +90,15 @@ sh run_standalone_train.sh DEVICE_ID DATA_PATH
#### Launch
```bash
# distributed training example(8p)
# distributed training example(8p) for Ascend
sh scripts/run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH /dataset/train
# standalone training example
# standalone training example for Ascend
sh scripts/run_standalone_train.sh 0 /dataset/train
# distributed training example(8p) for GPU
sh scripts/run_distribute_train_for_gpu.sh /dataset/train
# standalone training example for GPU
sh scripts/run_standalone_train_for_gpu.sh 0 /dataset/train
```
#### Result
@ -106,14 +111,15 @@ You can find checkpoint file together with result in log.
```
# Evaluation
sh run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH
sh run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH PLATFORM
```
PLATFORM is Ascend or GPU, default is Ascend.
#### Launch
```bash
# Evaluation with checkpoint
sh scripts/run_eval.sh 0 /opt/npu/datasets/classification/val /resnext50_100.ckpt
sh scripts/run_eval.sh 0 /opt/npu/datasets/classification/val /resnext50_100.ckpt Ascend
```
> checkpoint can be produced in training process.

View File

@ -29,15 +29,11 @@ from mindspore.ops import functional as F
from mindspore.common import dtype as mstype
from src.utils.logging import get_logger
from src.utils.auto_mixed_precision import auto_mixed_precision
from src.image_classification import get_network
from src.dataset import classification_dataset
from src.config import config
devid = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
device_target="Ascend", save_graphs=False, device_id=devid)
class ParameterReduce(nn.Cell):
"""ParameterReduce"""
@ -56,6 +52,7 @@ class ParameterReduce(nn.Cell):
def parse_args(cloud_args=None):
"""parse_args"""
parser = argparse.ArgumentParser('mindspore classification test')
parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform')
# dataset related
parser.add_argument('--data_dir', type=str, default='/opt/npu/datasets/classification/val', help='eval data dir')
@ -108,12 +105,25 @@ def merge_args(args, cloud_args):
def test(cloud_args=None):
"""test"""
args = parse_args(cloud_args)
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
device_target=args.platform, save_graphs=False)
if os.getenv('DEVICE_ID', "not_set").isdigit():
context.set_context(device_id=int(os.getenv('DEVICE_ID')))
# init distributed
if args.is_distributed:
init()
if args.platform == "Ascend":
init()
elif args.platform == "GPU":
init("nccl")
args.rank = get_rank()
args.group_size = get_group_size()
parallel_mode = ParallelMode.DATA_PARALLEL
context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=args.group_size,
parameter_broadcast=True, mirror_mean=True)
else:
args.rank = 0
args.group_size = 1
args.outputs_dir = os.path.join(args.log_path,
datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
@ -140,7 +150,7 @@ def test(cloud_args=None):
max_epoch=1, rank=args.rank, group_size=args.group_size,
mode='eval')
eval_dataloader = de_dataset.create_tuple_iterator()
network = get_network(args.backbone, args.num_classes)
network = get_network(args.backbone, args.num_classes, platform=args.platform)
if network is None:
raise NotImplementedError('not implement {}'.format(args.backbone))
@ -157,12 +167,13 @@ def test(cloud_args=None):
load_param_into_net(network, param_dict_new)
args.logger.info('load model {} success'.format(model))
# must add
network.add_flags_recursive(fp16=True)
img_tot = 0
top1_correct = 0
top5_correct = 0
if args.platform == "Ascend":
network.to_float(mstype.float16)
else:
auto_mixed_precision(network)
network.set_train(False)
t_end = time.time()
it = 0

View File

@ -0,0 +1,30 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
DATA_DIR=$1
export RANK_SIZE=8
PATH_CHECKPOINT=""
if [ $# == 2 ]
then
PATH_CHECKPOINT=$2
fi
mpirun --allow-run-as-root -n $RANK_SIZE \
python train.py \
--is_distribute=1 \
--platform="GPU" \
--pretrained=$PATH_CHECKPOINT \
--data_dir=$DATA_DIR > log.txt 2>&1 &

View File

@ -14,11 +14,16 @@
# limitations under the License.
# ============================================================================
DEVICE_ID=$1
export DEVICE_ID=$1
DATA_DIR=$2
PATH_CHECKPOINT=$3
PLATFORM=Ascend
if [ $# == 4 ]
then
PLATFORM=$4
fi
python eval.py \
--device_id=$DEVICE_ID \
--pretrained=$PATH_CHECKPOINT \
--platform=$PLATFORM \
--data_dir=$DATA_DIR > log.txt 2>&1 &

View File

@ -14,7 +14,7 @@
# limitations under the License.
# ============================================================================
DEVICE_ID=$1
export DEVICE_ID=$1
DATA_DIR=$2
PATH_CHECKPOINT=""
if [ $# == 3 ]

View File

@ -0,0 +1,30 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
export DEVICE_ID=$1
DATA_DIR=$2
PATH_CHECKPOINT=""
if [ $# == 3 ]
then
PATH_CHECKPOINT=$3
fi
python train.py \
--is_distribute=0 \
--pretrained=$PATH_CHECKPOINT \
--platform="GPU" \
--data_dir=$DATA_DIR > log.txt 2>&1 &

View File

@ -87,7 +87,8 @@ class BasicBlock(nn.Cell):
"""
expansion = 1
def __init__(self, in_channels, out_channels, stride=1, down_sample=None, use_se=False, **kwargs):
def __init__(self, in_channels, out_channels, stride=1, down_sample=None, use_se=False,
platform="Ascend", **kwargs):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(in_channels, out_channels, stride=stride)
self.bn1 = nn.BatchNorm2d(out_channels)
@ -142,7 +143,7 @@ class Bottleneck(nn.Cell):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1, down_sample=None,
base_width=64, groups=1, use_se=False, **kwargs):
base_width=64, groups=1, use_se=False, platform="Ascend", **kwargs):
super(Bottleneck, self).__init__()
width = int(out_channels * (base_width / 64.0)) * groups
@ -153,7 +154,11 @@ class Bottleneck(nn.Cell):
self.conv3x3s = nn.CellList()
self.conv2 = GroupConv(width, width, 3, stride, pad=1, groups=groups)
if platform == "GPU":
self.conv2 = nn.Conv2d(width, width, 3, stride, pad_mode='pad', padding=1, group=groups)
else:
self.conv2 = GroupConv(width, width, 3, stride, pad=1, groups=groups)
self.op_split = Split(axis=1, output_num=self.groups)
self.op_concat = Concat(axis=1)
@ -211,7 +216,7 @@ class ResNet(nn.Cell):
Examples:
>>>ResNet()
"""
def __init__(self, block, layers, width_per_group=64, groups=1, use_se=False):
def __init__(self, block, layers, width_per_group=64, groups=1, use_se=False, platform="Ascend"):
super(ResNet, self).__init__()
self.in_channels = 64
self.groups = groups
@ -222,10 +227,10 @@ class ResNet(nn.Cell):
self.relu = P.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')
self.layer1 = self._make_layer(block, 64, layers[0], use_se=use_se)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, use_se=use_se)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, use_se=use_se)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, use_se=use_se)
self.layer1 = self._make_layer(block, 64, layers[0], use_se=use_se, platform=platform)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2, use_se=use_se, platform=platform)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2, use_se=use_se, platform=platform)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, use_se=use_se, platform=platform)
self.out_channels = 512 * block.expansion
self.cast = P.Cast()
@ -242,7 +247,7 @@ class ResNet(nn.Cell):
return x
def _make_layer(self, block, out_channels, blocks_num, stride=1, use_se=False):
def _make_layer(self, block, out_channels, blocks_num, stride=1, use_se=False, platform="Ascend"):
"""_make_layer"""
down_sample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
@ -257,11 +262,12 @@ class ResNet(nn.Cell):
down_sample=down_sample,
base_width=self.base_width,
groups=self.groups,
use_se=use_se))
use_se=use_se,
platform=platform))
self.in_channels = out_channels * block.expansion
for _ in range(1, blocks_num):
layers.append(block(self.in_channels, out_channels,
base_width=self.base_width, groups=self.groups, use_se=use_se))
layers.append(block(self.in_channels, out_channels, base_width=self.base_width,
groups=self.groups, use_se=use_se, platform=platform))
return nn.SequentialCell(layers)
@ -269,5 +275,5 @@ class ResNet(nn.Cell):
return self.out_channels
def resnext50():
return ResNet(Bottleneck, [3, 4, 6, 3], width_per_group=4, groups=32)
def resnext50(platform="Ascend"):
return ResNet(Bottleneck, [3, 4, 6, 3], width_per_group=4, groups=32, platform=platform)

View File

@ -36,7 +36,8 @@ config = ed({
"label_smooth": 1,
"label_smooth_factor": 0.1,
"ckpt_interval": 1250,
"ckpt_interval": 5,
"ckpt_save_max": 5,
"ckpt_path": 'outputs/',
"is_save_on_master": 1,

View File

@ -143,8 +143,10 @@ def classification_dataset(data_dir, image_size, per_batch_size, max_epoch, rank
de_dataset = de.GeneratorDataset(dataset, ["image", "label"], sampler=sampler)
de_dataset.set_dataset_size(len(sampler))
de_dataset = de_dataset.map(input_columns="image", num_parallel_workers=8, operations=transform_img)
de_dataset = de_dataset.map(input_columns="label", num_parallel_workers=8, operations=transform_label)
de_dataset = de_dataset.map(input_columns="image", num_parallel_workers=num_parallel_workers,
operations=transform_img)
de_dataset = de_dataset.map(input_columns="label", num_parallel_workers=num_parallel_workers,
operations=transform_label)
columns_to_project = ["image", "label"]
de_dataset = de_dataset.project(columns=columns_to_project)

View File

@ -50,9 +50,9 @@ class Resnet(ImageClassificationNetwork):
Returns:
Resnet.
"""
def __init__(self, backbone_name, num_classes):
def __init__(self, backbone_name, num_classes, platform="Ascend"):
self.backbone_name = backbone_name
backbone = backbones.__dict__[self.backbone_name]()
backbone = backbones.__dict__[self.backbone_name](platform=platform)
out_channels = backbone.get_out_channels()
head = heads.CommonHead(num_classes=num_classes, out_channels=out_channels)
super(Resnet, self).__init__(backbone, head)
@ -79,7 +79,7 @@ class Resnet(ImageClassificationNetwork):
def get_network(backbone_name, num_classes):
def get_network(backbone_name, num_classes, platform="Ascend"):
if backbone_name in ['resnext50']:
return Resnet(backbone_name, num_classes)
return Resnet(backbone_name, num_classes, platform)
return None

View File

@ -0,0 +1,56 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Auto mixed precision."""
import mindspore.nn as nn
from mindspore.ops import functional as F
from mindspore._checkparam import Validator as validator
from mindspore.common import dtype as mstype
class OutputTo(nn.Cell):
"Cast cell output back to float16 or float32"
def __init__(self, op, to_type=mstype.float16):
super(OutputTo, self).__init__(auto_prefix=False)
self._op = op
validator.check_type_name('to_type', to_type, [mstype.float16, mstype.float32], None)
self.to_type = to_type
def construct(self, x):
return F.cast(self._op(x), self.to_type)
def auto_mixed_precision(network):
"""Do keep batchnorm fp32."""
cells = network.name_cells()
change = False
network.to_float(mstype.float16)
for name in cells:
subcell = cells[name]
if subcell == network:
continue
elif name == 'fc':
network.insert_child_to_cell(name, OutputTo(subcell, mstype.float32))
change = True
elif name == 'conv2':
subcell.to_float(mstype.float32)
change = True
elif isinstance(subcell, (nn.BatchNorm2d, nn.BatchNorm1d)):
network.insert_child_to_cell(name, OutputTo(subcell.to_float(mstype.float32), mstype.float16))
change = True
else:
auto_mixed_precision(subcell)
if isinstance(network, nn.SequentialCell) and change:
network.cell_list = list(network.cells())

View File

@ -29,14 +29,10 @@ class GlobalAvgPooling(nn.Cell):
"""
def __init__(self):
super(GlobalAvgPooling, self).__init__()
self.mean = P.ReduceMean(True)
self.shape = P.Shape()
self.reshape = P.Reshape()
self.mean = P.ReduceMean(False)
def construct(self, x):
x = self.mean(x, (2, 3))
b, c, _, _ = self.shape(x)
x = self.reshape(x, (b, c))
return x

View File

@ -36,11 +36,9 @@ from src.warmup_cosine_annealing_lr import warmup_cosine_annealing_lr
from src.utils.logging import get_logger
from src.utils.optimizers__init__ import get_param_groups
from src.image_classification import get_network
from src.utils.auto_mixed_precision import auto_mixed_precision
from src.config import config
devid = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
device_target="Ascend", save_graphs=False, device_id=devid)
class BuildTrainNetwork(nn.Cell):
"""build training network"""
@ -109,6 +107,7 @@ class ProgressMonitor(Callback):
def parse_args(cloud_args=None):
"""parameters"""
parser = argparse.ArgumentParser('mindspore classification training')
parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform')
# dataset related
parser.add_argument('--data_dir', type=str, default='', help='train data dir')
@ -141,6 +140,7 @@ def parse_args(cloud_args=None):
args.label_smooth = config.label_smooth
args.label_smooth_factor = config.label_smooth_factor
args.ckpt_interval = config.ckpt_interval
args.ckpt_save_max = config.ckpt_save_max
args.ckpt_path = config.ckpt_path
args.is_save_on_master = config.is_save_on_master
args.rank = config.rank
@ -166,12 +166,25 @@ def merge_args(args, cloud_args):
def train(cloud_args=None):
"""training process"""
args = parse_args(cloud_args)
context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True,
device_target=args.platform, save_graphs=False)
if os.getenv('DEVICE_ID', "not_set").isdigit():
context.set_context(device_id=int(os.getenv('DEVICE_ID')))
# init distributed
if args.is_distributed:
init()
if args.platform == "Ascend":
init()
else:
init("nccl")
args.rank = get_rank()
args.group_size = get_group_size()
parallel_mode = ParallelMode.DATA_PARALLEL
context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=args.group_size,
parameter_broadcast=True, mirror_mean=True)
else:
args.rank = 0
args.group_size = 1
if args.is_dynamic_loss_scale == 1:
args.loss_scale = 1 # for dynamic loss scale can not set loss scale in momentum opt
@ -192,7 +205,7 @@ def train(cloud_args=None):
# dataloader
de_dataset = classification_dataset(args.data_dir, args.image_size,
args.per_batch_size, 1,
args.rank, args.group_size)
args.rank, args.group_size, num_parallel_workers=8)
de_dataset.map_model = 4 # !!!important
args.steps_per_epoch = de_dataset.get_dataset_size()
@ -201,15 +214,9 @@ def train(cloud_args=None):
# network
args.logger.important_info('start create network')
# get network and init
network = get_network(args.backbone, args.num_classes)
network = get_network(args.backbone, args.num_classes, platform=args.platform)
if network is None:
raise NotImplementedError('not implement {}'.format(args.backbone))
network.add_flags_recursive(fp16=True)
# loss
if not args.label_smooth:
args.label_smooth_factor = 0.0
criterion = CrossEntropy(smooth_factor=args.label_smooth_factor,
num_classes=args.num_classes)
# load pretrain model
if os.path.isfile(args.pretrained):
@ -252,31 +259,29 @@ def train(cloud_args=None):
loss_scale=args.loss_scale)
criterion.add_flags_recursive(fp32=True)
# loss
if not args.label_smooth:
args.label_smooth_factor = 0.0
loss = CrossEntropy(smooth_factor=args.label_smooth_factor, num_classes=args.num_classes)
# package training process, adjust lr + forward + backward + optimizer
train_net = BuildTrainNetwork(network, criterion)
if args.is_distributed:
parallel_mode = ParallelMode.DATA_PARALLEL
else:
parallel_mode = ParallelMode.STAND_ALONE
if args.is_dynamic_loss_scale == 1:
loss_scale_manager = DynamicLossScaleManager(init_loss_scale=65536, scale_factor=2, scale_window=2000)
else:
loss_scale_manager = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
# Model api changed since TR5_branch 2020/03/09
context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=args.group_size,
parameter_broadcast=True, mirror_mean=True)
model = Model(train_net, optimizer=opt, metrics=None, loss_scale_manager=loss_scale_manager)
if args.platform == "Ascend":
model = Model(network, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale_manager,
metrics={'acc'}, amp_level="O3")
else:
auto_mixed_precision(network)
model = Model(network, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale_manager, metrics={'acc'})
# checkpoint save
progress_cb = ProgressMonitor(args)
callbacks = [progress_cb,]
if args.rank_save_ckpt_flag:
ckpt_max_num = args.max_epoch * args.steps_per_epoch // args.ckpt_interval
ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval,
keep_checkpoint_max=ckpt_max_num)
ckpt_config = CheckpointConfig(save_checkpoint_steps=args.ckpt_interval * args.steps_per_epoch,
keep_checkpoint_max=args.ckpt_save_max)
ckpt_cb = ModelCheckpoint(config=ckpt_config,
directory=args.outputs_dir,
prefix='{}'.format(args.rank))