forked from mindspore-Ecosystem/mindspore
!12005 [MS][LITE] add tf parsers
From: @cjh9368 Reviewed-by: Signed-off-by:
This commit is contained in:
commit
027152b6ac
|
@ -273,7 +273,9 @@ union PrimitiveType {
|
|||
RandomStandardNormal,
|
||||
CropAndResize,
|
||||
Erf,
|
||||
StridedSliceGrad
|
||||
StridedSliceGrad,
|
||||
IsFinite,
|
||||
BatchMatMul,
|
||||
}
|
||||
|
||||
enum QuantType: int {
|
||||
|
|
|
@ -1275,3 +1275,11 @@ table StridedSliceGrad {
|
|||
|
||||
table Erf {
|
||||
}
|
||||
|
||||
table IsFinite {
|
||||
}
|
||||
|
||||
table BatchMatMul {
|
||||
adj_x : bool = false;
|
||||
adj_y : bool = false;
|
||||
}
|
|
@ -0,0 +1,81 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "src/ops/batch_matmul.h"
|
||||
#include <memory>
|
||||
#ifndef PRIMITIVE_WRITEABLE
|
||||
#include "src/ops/ops_register.h"
|
||||
#endif
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
#ifdef PRIMITIVE_WRITEABLE
|
||||
bool BatchMatMul::GetAdjX() const { return this->primitive_->value.AsBatchMatMul()->adj_x; }
|
||||
|
||||
void BatchMatMul::SetAdjX(bool adj_x) { this->primitive_->value.AsBatchMatMul()->adj_x = adj_x; }
|
||||
|
||||
bool BatchMatMul::GetAdjY() const { return this->primitive_->value.AsBatchMatMul()->adj_y; }
|
||||
|
||||
void BatchMatMul::SetAdjY(bool adj_y) { this->primitive_->value.AsBatchMatMul()->adj_y = adj_y; }
|
||||
|
||||
int BatchMatMul::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) {
|
||||
if (this->primitive_ == nullptr) {
|
||||
this->primitive_ = new (std::nothrow) schema::PrimitiveT;
|
||||
if (this->primitive_ == nullptr) {
|
||||
MS_LOG(ERROR) << "new primitiveT failed";
|
||||
return RET_ERROR;
|
||||
}
|
||||
this->primitive_->value.type = schema::PrimitiveType_BatchMatMul;
|
||||
}
|
||||
if (this->primitive_->value.type != schema::PrimitiveType_BatchMatMul) {
|
||||
MS_LOG(ERROR) << "Primitive type is error :" << this->primitive_->value.type;
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (this->primitive_->value.value == nullptr) {
|
||||
auto attr = new (std::nothrow) schema::BatchMatMulT();
|
||||
if (attr == nullptr) {
|
||||
MS_LOG(ERROR) << "new FusedBatchMatMulT failed";
|
||||
delete this->primitive_;
|
||||
this->primitive_ = nullptr;
|
||||
return RET_ERROR;
|
||||
}
|
||||
attr->adj_x = GetValue<bool>(prim.GetAttr("adj_x"));
|
||||
attr->adj_y = GetValue<bool>(prim.GetAttr("adj_y"));
|
||||
this->primitive_->value.value = attr;
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
#else
|
||||
int BatchMatMul::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) {
|
||||
MS_ASSERT(nullptr != primitive);
|
||||
MS_ASSERT(nullptr != fbb);
|
||||
auto val_offset = schema::CreateBatchMatMul(*fbb);
|
||||
auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_BatchMatMul, val_offset.o);
|
||||
fbb->Finish(prim_offset);
|
||||
return RET_OK;
|
||||
}
|
||||
bool BatchMatMul::GetAdjX() const { return this->primitive_->value_as_BatchMatMul()->adj_x(); }
|
||||
|
||||
bool BatchMatMul::GetAdjY() const { return this->primitive_->value_as_BatchMatMul()->adj_y(); }
|
||||
|
||||
PrimitiveC *BatchMatMulCreator(const schema::Primitive *primitive) {
|
||||
return PrimitiveC::NewPrimitiveC<BatchMatMul>(primitive);
|
||||
}
|
||||
Registry BatchMatMulRegistry(schema::PrimitiveType_BatchMatMul, BatchMatMulCreator);
|
||||
#endif
|
||||
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,46 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef LITE_MINDSPORE_LITE_C_OPS_BATCH_MATMUL_H_
|
||||
#define LITE_MINDSPORE_LITE_C_OPS_BATCH_MATMUL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <set>
|
||||
#include <cmath>
|
||||
#include "src/ops/primitive_c.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
class BatchMatMul : public PrimitiveC {
|
||||
public:
|
||||
BatchMatMul() = default;
|
||||
~BatchMatMul() = default;
|
||||
#ifdef PRIMITIVE_WRITEABLE
|
||||
MS_DECLARE_PARENT(BatchMatMul, PrimitiveC);
|
||||
explicit BatchMatMul(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {}
|
||||
int UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) override;
|
||||
void SetAdjX(bool adj_x);
|
||||
void SetAdjY(bool adj_y);
|
||||
#else
|
||||
int UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) override;
|
||||
#endif
|
||||
bool GetAdjX() const;
|
||||
bool GetAdjY() const;
|
||||
};
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // LITE_MINDSPORE_LITE_C_OPS_BATCH_MATMUL_H_
|
|
@ -0,0 +1,33 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "src/ops/primitive_c.h"
|
||||
|
||||
#ifndef LITE_MINDSPORE_LITE_C_OPS_IS_FINITE_H_
|
||||
#define LITE_MINDSPORE_LITE_C_OPS_IS_FINITE_H_
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
class IsFinite : public PrimitiveC {
|
||||
public:
|
||||
MS_DECLARE_PARENT(IsFinite, PrimitiveC);
|
||||
IsFinite() = default;
|
||||
~IsFinite() = default;
|
||||
explicit IsFinite(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {}
|
||||
};
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
#endif // LITE_MINDSPORE_LITE_C_OPS_IS_FINITE_H_
|
|
@ -170,6 +170,8 @@
|
|||
#include "src/ops/crop_and_resize.h"
|
||||
#include "src/ops/nonzero.h"
|
||||
#include "src/ops/erf.h"
|
||||
#include "src/ops/is_finite.h"
|
||||
#include "src/ops/batch_matmul.h"
|
||||
|
||||
#ifdef SUPPORT_TRAIN
|
||||
#include "src/ops/neg_grad.h"
|
||||
|
@ -665,7 +667,6 @@ std::shared_ptr<PrimitiveC> PrimitiveC::Create(const Primitive &prim, const std:
|
|||
return NewPrimitiveC<ArgMax>(prim, inputs, quantType);
|
||||
} else if (op_type == "Gelu") {
|
||||
return NewPrimitiveC<GeLU>(prim, inputs, quantType);
|
||||
|
||||
#ifdef SUPPORT_TRAIN
|
||||
} else if (op_type == "SoftmaxCrossEntropyWithLogits") {
|
||||
return NewPrimitiveC<SoftmaxCrossEntropy>(prim, inputs, quantType);
|
||||
|
@ -1034,6 +1035,10 @@ PrimitiveC *PrimitiveC::Create(mindspore::schema::PrimitiveT *primitive) {
|
|||
return new (std::nothrow) NonZero(primitive);
|
||||
case schema::PrimitiveType_Erf:
|
||||
return new (std::nothrow) Erf(primitive);
|
||||
case schema::PrimitiveType_IsFinite:
|
||||
return new (std::nothrow) IsFinite(primitive);
|
||||
case schema::PrimitiveType_BatchMatMul:
|
||||
return new (std::nothrow) BatchMatMul(primitive);
|
||||
#ifdef SUPPORT_TRAIN
|
||||
case schema::PrimitiveType_ActivationGrad:
|
||||
return new (std::nothrow) ActivationGrad(primitive);
|
||||
|
|
|
@ -29,6 +29,18 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
template <typename T>
|
||||
int CreateOperator(const std::unique_ptr<schema::PrimitiveT> &primitive, schema::PrimitiveType type) {
|
||||
auto attr = std::make_unique<T>();
|
||||
if (attr == nullptr) {
|
||||
MS_LOG(ERROR) << "new attr failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
primitive->value.type = type;
|
||||
primitive->value.value = attr.release();
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
using STATUS = int;
|
||||
STATUS BroadCastQuantParam(schema::MetaGraphT *graphT, const std::unique_ptr<schema::CNodeT> &node);
|
||||
|
||||
|
@ -91,6 +103,226 @@ STATUS GetFilterDim(const std::vector<int32_t> &oriDims, kTransFilterType type,
|
|||
STATUS SetFilterDim(schema::TensorT *tensor, kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH,
|
||||
int32_t filterW);
|
||||
|
||||
template <typename T>
|
||||
static void TransKHWC2CHWK(int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW, T *srcData, T *dstData) {
|
||||
T *p1Buff = nullptr;
|
||||
T *p2Buff = nullptr;
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
p1Buff = srcData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
|
||||
p2Buff = dstData + ((c * filterK * filterH * filterW) + (h * filterK * filterW) + (w * filterK) + (k));
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void TransKHWC2HWCK(int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW, T *srcData, T *dstData) {
|
||||
T *p1Buff = nullptr;
|
||||
T *p2Buff = nullptr;
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
p1Buff = srcData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
|
||||
p2Buff = dstData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void TransCKHW(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
|
||||
T *srcData, T *dstData) {
|
||||
T *p1Buff = nullptr;
|
||||
T *p2Buff = nullptr;
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
p1Buff = srcData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
|
||||
if (type == kCKHW2HWCK) {
|
||||
p2Buff = dstData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
} else if (type == kCKHW2KHWC) {
|
||||
p2Buff = dstData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
|
||||
} else {
|
||||
p2Buff = dstData + ((h * filterW * filterK * filterC) + (w * filterK * filterC) + (k * filterC) + (c));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void TransKCHW(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
|
||||
T *srcData, T *dstData) {
|
||||
T *p1Buff = nullptr;
|
||||
T *p2Buff = nullptr;
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
p1Buff = srcData + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
|
||||
if (type == kKCHW2HWCK) {
|
||||
p2Buff = dstData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
} else if (type == kKCHW2KHWC) {
|
||||
p2Buff = dstData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
|
||||
} else if (type == kKCHW2CKHW) {
|
||||
p2Buff = dstData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
|
||||
} else {
|
||||
p2Buff = dstData + ((h * filterW * filterK * filterC) + (w * filterK * filterC) + (k * filterC) + (c));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void TransCHWK(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
|
||||
T *srcData, T *dstData) {
|
||||
T *p1Buff = nullptr;
|
||||
T *p2Buff = nullptr;
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
p1Buff = srcData + ((c * filterH * filterW * filterK) + (h * filterW * filterK) + (w * filterK) + (k));
|
||||
if (type == kCHWK2HWCK) {
|
||||
p2Buff = dstData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
} else {
|
||||
p2Buff = dstData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void TransHWCK(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
|
||||
T *srcData, T *dstData) {
|
||||
T *p1Buff = nullptr;
|
||||
T *p2Buff = nullptr;
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
p1Buff = srcData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
if (type == kHWCK2KCHW) {
|
||||
p2Buff = dstData + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
|
||||
} else {
|
||||
p2Buff = dstData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void TransHWKC(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
|
||||
T *srcData, T *dstData) {
|
||||
T *p1Buff = nullptr;
|
||||
T *p2Buff = nullptr;
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
p1Buff = srcData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (k * filterC) + (c));
|
||||
if (type == kHWKC2KCHW) {
|
||||
p2Buff = dstData + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
|
||||
} else {
|
||||
p2Buff = dstData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static void TransNHWC(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
|
||||
T *srcData, T *dstData) {
|
||||
T *p1Buff = nullptr;
|
||||
T *p2Buff = nullptr;
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
p1Buff = srcData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (k * filterC) + (c));
|
||||
if (type == kNHWC2HWCK) {
|
||||
p2Buff = dstData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
} else if (type == kNHWC2CKHW) {
|
||||
p2Buff = dstData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
|
||||
} else {
|
||||
p2Buff = dstData + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static STATUS TransFilterData(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
|
||||
T *srcData, T *dstData) {
|
||||
switch (type) {
|
||||
case kCHWK2HWCK:
|
||||
case kCHWK2KHWC: {
|
||||
TransCHWK(type, filterK, filterC, filterH, filterW, srcData, dstData);
|
||||
} break;
|
||||
case kKHWC2HWCK: {
|
||||
TransKHWC2HWCK(filterK, filterC, filterH, filterW, srcData, dstData);
|
||||
} break;
|
||||
case kKCHW2HWCK:
|
||||
case kKCHW2CKHW:
|
||||
case kKCHW2KHWC:
|
||||
case kKCHW2HWKC: {
|
||||
TransKCHW(type, filterK, filterC, filterH, filterW, srcData, dstData);
|
||||
} break;
|
||||
case kCKHW2HWCK:
|
||||
case kCKHW2KHWC:
|
||||
case kCKHW2HWKC: {
|
||||
TransCKHW(type, filterK, filterC, filterH, filterW, srcData, dstData);
|
||||
} break;
|
||||
case kHWCK2KCHW:
|
||||
case kHWCK2CKHW: {
|
||||
TransHWCK(type, filterK, filterC, filterH, filterW, srcData, dstData);
|
||||
} break;
|
||||
case kHWKC2KCHW:
|
||||
case kHWKC2CKHW: {
|
||||
TransHWKC(type, filterK, filterC, filterH, filterW, srcData, dstData);
|
||||
} break;
|
||||
case kNHWC2HWCK:
|
||||
case kNHWC2KCHW:
|
||||
case kNHWC2CKHW: {
|
||||
TransNHWC(type, filterK, filterC, filterH, filterW, srcData, dstData);
|
||||
} break;
|
||||
case kKHWC2CHWK: {
|
||||
TransKHWC2CHWK(filterK, filterC, filterH, filterW, srcData, dstData);
|
||||
} break;
|
||||
default: {
|
||||
MS_LOG(ERROR) << "Unsupported transFilterType: " << type;
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static STATUS TransFilterData(schema::TensorT *tensor, kTransFilterType type, int32_t filterK, int32_t filterC,
|
||||
int32_t filterH, int32_t filterW) {
|
||||
|
@ -113,176 +345,11 @@ static STATUS TransFilterData(schema::TensorT *tensor, kTransFilterType type, in
|
|||
MS_LOG(ERROR) << "weightData is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
T *p1Buff = nullptr;
|
||||
T *p2Buff = nullptr;
|
||||
switch (type) {
|
||||
case kCHWK2HWCK:
|
||||
case kCHWK2KHWC: {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
p1Buff = weightData + ((c * filterH * filterW * filterK) + (h * filterW * filterK) + (w * filterK) + (k));
|
||||
if (type == kCHWK2HWCK) {
|
||||
p2Buff =
|
||||
buf.get() + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
} else {
|
||||
p2Buff =
|
||||
buf.get() + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case kKHWC2HWCK: {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
p1Buff = weightData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
|
||||
p2Buff = buf.get() + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case kKCHW2HWCK:
|
||||
case kKCHW2CKHW:
|
||||
case kKCHW2KHWC:
|
||||
case kKCHW2HWKC: {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
p1Buff = weightData + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
|
||||
if (type == kKCHW2HWCK) {
|
||||
p2Buff =
|
||||
buf.get() + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
} else if (type == kKCHW2KHWC) {
|
||||
p2Buff =
|
||||
buf.get() + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
|
||||
} else if (type == kKCHW2CKHW) {
|
||||
p2Buff =
|
||||
buf.get() + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
|
||||
} else {
|
||||
p2Buff =
|
||||
buf.get() + ((h * filterW * filterK * filterC) + (w * filterK * filterC) + (k * filterC) + (c));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case kCKHW2HWCK:
|
||||
case kCKHW2KHWC:
|
||||
case kCKHW2HWKC: {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
p1Buff = weightData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
|
||||
if (type == kCKHW2HWCK) {
|
||||
p2Buff =
|
||||
buf.get() + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
} else if (type == kCKHW2KHWC) {
|
||||
p2Buff =
|
||||
buf.get() + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
|
||||
} else {
|
||||
p2Buff =
|
||||
buf.get() + ((h * filterW * filterK * filterC) + (w * filterK * filterC) + (k * filterC) + (c));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case kHWCK2KCHW:
|
||||
case kHWCK2CKHW: {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
p1Buff = weightData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
if (type == kHWCK2KCHW) {
|
||||
p2Buff =
|
||||
buf.get() + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
|
||||
} else {
|
||||
p2Buff =
|
||||
buf.get() + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case kHWKC2KCHW:
|
||||
case kHWKC2CKHW: {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
p1Buff = weightData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (k * filterC) + (c));
|
||||
if (type == kHWKC2KCHW) {
|
||||
p2Buff =
|
||||
buf.get() + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
|
||||
} else {
|
||||
p2Buff =
|
||||
buf.get() + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case kNHWC2HWCK:
|
||||
case kNHWC2KCHW:
|
||||
case kNHWC2CKHW: {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
p1Buff = weightData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (k * filterC) + (c));
|
||||
if (type == kNHWC2HWCK) {
|
||||
p2Buff =
|
||||
buf.get() + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
|
||||
} else if (type == kNHWC2CKHW) {
|
||||
p2Buff =
|
||||
buf.get() + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
|
||||
} else {
|
||||
p2Buff =
|
||||
buf.get() + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
|
||||
}
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case kKHWC2CHWK: {
|
||||
for (int k = 0; k < filterK; ++k) {
|
||||
for (int h = 0; h < filterH; ++h) {
|
||||
for (int w = 0; w < filterW; ++w) {
|
||||
for (int c = 0; c < filterC; ++c) {
|
||||
p1Buff = weightData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
|
||||
p2Buff = buf.get() + ((c * filterK * filterH * filterW) + (h * filterK * filterW) + (w * filterK) + (k));
|
||||
*p2Buff = *p1Buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
default: {
|
||||
MS_LOG(ERROR) << "Unsupported transFilterType: " << type;
|
||||
|
||||
if (TransFilterData(type, filterK, filterC, filterH, filterW, weightData, buf.get()) != RET_OK) {
|
||||
MS_LOG(ERROR) << "TransFilterData failed";
|
||||
return RET_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
auto ret = ::memcpy_s(tensor->data.data(), count * sizeof(T), buf.get(), count * sizeof(T));
|
||||
if (ret != EOK) {
|
||||
|
|
|
@ -19,22 +19,11 @@
|
|||
#include <map>
|
||||
#include <vector>
|
||||
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
|
||||
#include "tools/common/node_util.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
|
||||
template <typename T>
|
||||
int CreateOperator(const std::unique_ptr<schema::PrimitiveT> &primitive, schema::PrimitiveType type) {
|
||||
auto attr = std::make_unique<T>();
|
||||
if (attr == nullptr) {
|
||||
MS_LOG(ERROR) << "new attr failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
primitive->value.type = type;
|
||||
primitive->value.value = attr.release();
|
||||
return RET_OK;
|
||||
}
|
||||
|
||||
STATUS TFArithmeticSelfParser::Parse(const tensorflow::NodeDef &tf_op,
|
||||
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
|
||||
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
|
||||
|
@ -61,6 +50,12 @@ STATUS TFArithmeticSelfParser::Parse(const tensorflow::NodeDef &tf_op,
|
|||
status = CreateOperator<schema::LogT>(primitive, schema::PrimitiveType_Log);
|
||||
} else if (tf_op.op() == "Sqrt") {
|
||||
status = CreateOperator<schema::SqrtT>(primitive, schema::PrimitiveType_Sqrt);
|
||||
} else if (tf_op.op() == "Cos") {
|
||||
status = CreateOperator<schema::CosT>(primitive, schema::PrimitiveType_Cos);
|
||||
} else if (tf_op.op() == "Sin") {
|
||||
status = CreateOperator<schema::SinT>(primitive, schema::PrimitiveType_Sin);
|
||||
} else if (tf_op.op() == "Square") {
|
||||
status = CreateOperator<schema::SquareT>(primitive, schema::PrimitiveType_Square);
|
||||
} else if (tf_op.op() == "Pow") {
|
||||
status = CreateOperator<schema::PowerT>(primitive, schema::PrimitiveType_Power);
|
||||
}
|
||||
|
@ -81,6 +76,9 @@ STATUS TFArithmeticSelfParser::Parse(const tensorflow::NodeDef &tf_op,
|
|||
}
|
||||
return status;
|
||||
}
|
||||
TFNodeRegistrar g_tfCosParser("Cos", new TFArithmeticSelfParser());
|
||||
TFNodeRegistrar g_tfSinParser("Sin", new TFArithmeticSelfParser());
|
||||
TFNodeRegistrar g_tfSquareParser("Square", new TFArithmeticSelfParser());
|
||||
TFNodeRegistrar g_tfCeilParser("Ceil", new TFArithmeticSelfParser());
|
||||
TFNodeRegistrar g_tfExpParser("Exp", new TFArithmeticSelfParser());
|
||||
TFNodeRegistrar g_tfFloorParser("Floor", new TFArithmeticSelfParser());
|
||||
|
|
|
@ -0,0 +1,64 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "tools/converter/parser/tf/tf_batch_matmul_parser.h"
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
STATUS TFBatchMatmulParser::Parse(const tensorflow::NodeDef &tf_op,
|
||||
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
|
||||
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
|
||||
if (primitiveC == nullptr || output_size == nullptr) {
|
||||
MS_LOG(ERROR) << "primitiveC is nullptr";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
||||
auto primitive = std::make_unique<schema::PrimitiveT>();
|
||||
if (primitive == nullptr) {
|
||||
MS_LOG(ERROR) << "primitive is nullptr";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
auto attr = std::make_unique<schema::BatchMatMulT>();
|
||||
if (attr == nullptr) {
|
||||
MS_LOG(ERROR) << "new op failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
tensorflow::AttrValue attr_value;
|
||||
TensorFlowUtils::FindAttrValue(tf_op, "adj_x", &attr_value);
|
||||
attr->adj_x = attr_value.b();
|
||||
attr->adj_y = attr_value.b();
|
||||
|
||||
primitive->value.type = schema::PrimitiveType_BatchMatMul;
|
||||
primitive->value.value = attr.release();
|
||||
*primitiveC = PrimitiveC::Create(primitive.release());
|
||||
if (*primitiveC == nullptr) {
|
||||
MS_LOG(ERROR) << "primitiveC is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
*output_size = 1;
|
||||
for (int i = 0; i < tf_op.input_size(); i++) {
|
||||
inputs->emplace_back(tf_op.input(i));
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
TFNodeRegistrar g_tfBatchMatMulParser("BatchMatMul", new TFBatchMatmulParser());
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,37 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_BATCH_MATMUL_PARSER_H_
|
||||
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_BATCH_MATMUL_PARSER_H_
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include "tools/converter/parser/tf/tf_node_parser.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
class TFBatchMatmulParser : public TFNodeParser {
|
||||
public:
|
||||
TFBatchMatmulParser() = default;
|
||||
~TFBatchMatmulParser() override = default;
|
||||
|
||||
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
|
||||
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
|
||||
};
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_BATCH_MATMUL_PARSER_H_
|
|
@ -0,0 +1,59 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "tools/converter/parser/tf/tf_is_finite_parser.h"
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
|
||||
#include "tools/common/node_util.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
STATUS TFIsFiniteParser::Parse(const tensorflow::NodeDef &tf_op,
|
||||
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
|
||||
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
|
||||
if (primitiveC == nullptr || output_size == nullptr) {
|
||||
MS_LOG(ERROR) << "primitiveC is nullptr";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
||||
auto primitive = std::make_unique<schema::PrimitiveT>();
|
||||
if (primitive == nullptr) {
|
||||
MS_LOG(ERROR) << "primitive is nullptr";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
||||
int status = CreateOperator<schema::IsFiniteT>(primitive, schema::PrimitiveType_IsFinite);
|
||||
if (status != RET_OK) {
|
||||
return status;
|
||||
}
|
||||
*primitiveC = PrimitiveC::Create(primitive.release());
|
||||
if (*primitiveC == nullptr) {
|
||||
MS_LOG(ERROR) << "primitiveC is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
*output_size = 1;
|
||||
for (int i = 0; i < tf_op.input_size(); i++) {
|
||||
inputs->emplace_back(tf_op.input(i));
|
||||
}
|
||||
|
||||
return RET_OK;
|
||||
}
|
||||
TFNodeRegistrar g_tf_is_finite_parser("IsFinite", new TFIsFiniteParser());
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,37 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_IS_FINITE_PARSER_H_
|
||||
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_IS_FINITE_PARSER_H_
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include "tools/converter/parser/tf/tf_node_parser.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
class TFIsFiniteParser : public TFNodeParser {
|
||||
public:
|
||||
TFIsFiniteParser() = default;
|
||||
~TFIsFiniteParser() override = default;
|
||||
|
||||
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
|
||||
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
|
||||
};
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_IS_FINITE_PARSER_H_
|
|
@ -19,6 +19,7 @@
|
|||
#include <string>
|
||||
#include <vector>
|
||||
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
|
||||
#include "tools/common/node_util.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
|
@ -36,37 +37,19 @@ STATUS TFLogicalParser::Parse(const tensorflow::NodeDef &tf_op,
|
|||
MS_LOG(ERROR) << "primitive is nullptr";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
||||
int status = RET_ERROR;
|
||||
if (tf_op.op() == "LogicalAnd") {
|
||||
auto attr = std::make_unique<schema::LogicalAndT>();
|
||||
if (attr == nullptr) {
|
||||
MS_LOG(ERROR) << "new op failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
primitive->value.type = schema::PrimitiveType_LogicalAnd;
|
||||
primitive->value.value = attr.release();
|
||||
*primitiveC = PrimitiveC::Create(primitive.release());
|
||||
status = CreateOperator<schema::LogicalAndT>(primitive, schema::PrimitiveType_LogicalAnd);
|
||||
} else if (tf_op.op() == "LogicalOr") {
|
||||
auto attr = std::make_unique<schema::LogicalOrT>();
|
||||
if (attr == nullptr) {
|
||||
MS_LOG(ERROR) << "new op failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
primitive->value.type = schema::PrimitiveType_LogicalOr;
|
||||
primitive->value.value = attr.release();
|
||||
*primitiveC = PrimitiveC::Create(primitive.release());
|
||||
status = CreateOperator<schema::LogicalOrT>(primitive, schema::PrimitiveType_LogicalOr);
|
||||
} else if (tf_op.op() == "LogicalNot") {
|
||||
auto attr = std::make_unique<schema::LogicalNotT>();
|
||||
if (attr == nullptr) {
|
||||
MS_LOG(ERROR) << "new op failed";
|
||||
return RET_NULL_PTR;
|
||||
status = CreateOperator<schema::LogicalNotT>(primitive, schema::PrimitiveType_LogicalNot);
|
||||
}
|
||||
if (status != RET_OK) {
|
||||
return status;
|
||||
}
|
||||
primitive->value.type = schema::PrimitiveType_LogicalNot;
|
||||
primitive->value.value = attr.release();
|
||||
*primitiveC = PrimitiveC::Create(primitive.release());
|
||||
} else {
|
||||
MS_LOG(ERROR) << tf_op.op() << " is not supported.";
|
||||
return RET_ERROR;
|
||||
}
|
||||
if (*primitiveC == nullptr) {
|
||||
MS_LOG(ERROR) << "primitiveC is nullptr";
|
||||
return RET_ERROR;
|
||||
|
@ -79,8 +62,8 @@ STATUS TFLogicalParser::Parse(const tensorflow::NodeDef &tf_op,
|
|||
|
||||
return RET_OK;
|
||||
}
|
||||
TFNodeRegistrar g_tfLogicalAndParser("LogicalAnd", new TFLogicalParser());
|
||||
TFNodeRegistrar g_tfLogicalOrParser("LogicalOr", new TFLogicalParser());
|
||||
TFNodeRegistrar g_tfLogicalNotParser("LogicalNot", new TFLogicalParser());
|
||||
TFNodeRegistrar g_tfLogicalOrParser("LogicalOr", new TFLogicalParser());
|
||||
TFNodeRegistrar g_tfLogicalAndParser("LogicalAnd", new TFLogicalParser());
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -0,0 +1,60 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "tools/converter/parser/tf/tf_zeros_like_parser.h"
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
STATUS TFZerosLikeParser::Parse(const tensorflow::NodeDef &tf_op,
|
||||
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
|
||||
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
|
||||
if (primitiveC == nullptr || output_size == nullptr) {
|
||||
MS_LOG(ERROR) << "primitiveC is nullptr";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
||||
auto primitive = std::make_unique<schema::PrimitiveT>();
|
||||
if (primitive == nullptr) {
|
||||
MS_LOG(ERROR) << "primitive is nullptr";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
auto attr = std::make_unique<schema::ZerosLikeT>();
|
||||
if (attr == nullptr) {
|
||||
MS_LOG(ERROR) << "new op failed";
|
||||
return RET_NULL_PTR;
|
||||
}
|
||||
|
||||
primitive->value.type = schema::PrimitiveType_ZerosLike;
|
||||
primitive->value.value = attr.release();
|
||||
*primitiveC = PrimitiveC::Create(primitive.release());
|
||||
if (*primitiveC == nullptr) {
|
||||
MS_LOG(ERROR) << "primitiveC is nullptr";
|
||||
return RET_ERROR;
|
||||
}
|
||||
|
||||
*output_size = tf_op.input_size();
|
||||
for (int i = 0; i < tf_op.input_size(); i++) {
|
||||
inputs->emplace_back(tf_op.input(i));
|
||||
}
|
||||
return RET_OK;
|
||||
}
|
||||
TFNodeRegistrar g_tfZerosLikeParser("ZerosLike", new TFZerosLikeParser());
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,37 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_ZERO_LIKE_PARSER_H_
|
||||
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_ZERO_LIKE_PARSER_H_
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include "tools/converter/parser/tf/tf_node_parser.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace lite {
|
||||
class TFZerosLikeParser : public TFNodeParser {
|
||||
public:
|
||||
TFZerosLikeParser() = default;
|
||||
~TFZerosLikeParser() override = default;
|
||||
|
||||
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
|
||||
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
|
||||
};
|
||||
} // namespace lite
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_ZERO_LIKE_PARSER_H_
|
Loading…
Reference in New Issue