!12005 [MS][LITE] add tf parsers

From: @cjh9368
Reviewed-by: 
Signed-off-by:
This commit is contained in:
mindspore-ci-bot 2021-02-07 15:49:22 +08:00 committed by Gitee
commit 027152b6ac
15 changed files with 729 additions and 212 deletions

View File

@ -273,7 +273,9 @@ union PrimitiveType {
RandomStandardNormal,
CropAndResize,
Erf,
StridedSliceGrad
StridedSliceGrad,
IsFinite,
BatchMatMul,
}
enum QuantType: int {

View File

@ -1274,4 +1274,12 @@ table StridedSliceGrad {
}
table Erf {
}
table IsFinite {
}
table BatchMatMul {
adj_x : bool = false;
adj_y : bool = false;
}

View File

@ -0,0 +1,81 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/ops/batch_matmul.h"
#include <memory>
#ifndef PRIMITIVE_WRITEABLE
#include "src/ops/ops_register.h"
#endif
namespace mindspore {
namespace lite {
#ifdef PRIMITIVE_WRITEABLE
bool BatchMatMul::GetAdjX() const { return this->primitive_->value.AsBatchMatMul()->adj_x; }
void BatchMatMul::SetAdjX(bool adj_x) { this->primitive_->value.AsBatchMatMul()->adj_x = adj_x; }
bool BatchMatMul::GetAdjY() const { return this->primitive_->value.AsBatchMatMul()->adj_y; }
void BatchMatMul::SetAdjY(bool adj_y) { this->primitive_->value.AsBatchMatMul()->adj_y = adj_y; }
int BatchMatMul::UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) {
if (this->primitive_ == nullptr) {
this->primitive_ = new (std::nothrow) schema::PrimitiveT;
if (this->primitive_ == nullptr) {
MS_LOG(ERROR) << "new primitiveT failed";
return RET_ERROR;
}
this->primitive_->value.type = schema::PrimitiveType_BatchMatMul;
}
if (this->primitive_->value.type != schema::PrimitiveType_BatchMatMul) {
MS_LOG(ERROR) << "Primitive type is error :" << this->primitive_->value.type;
return RET_ERROR;
}
if (this->primitive_->value.value == nullptr) {
auto attr = new (std::nothrow) schema::BatchMatMulT();
if (attr == nullptr) {
MS_LOG(ERROR) << "new FusedBatchMatMulT failed";
delete this->primitive_;
this->primitive_ = nullptr;
return RET_ERROR;
}
attr->adj_x = GetValue<bool>(prim.GetAttr("adj_x"));
attr->adj_y = GetValue<bool>(prim.GetAttr("adj_y"));
this->primitive_->value.value = attr;
}
return RET_OK;
}
#else
int BatchMatMul::UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) {
MS_ASSERT(nullptr != primitive);
MS_ASSERT(nullptr != fbb);
auto val_offset = schema::CreateBatchMatMul(*fbb);
auto prim_offset = schema::CreatePrimitive(*fbb, schema::PrimitiveType_BatchMatMul, val_offset.o);
fbb->Finish(prim_offset);
return RET_OK;
}
bool BatchMatMul::GetAdjX() const { return this->primitive_->value_as_BatchMatMul()->adj_x(); }
bool BatchMatMul::GetAdjY() const { return this->primitive_->value_as_BatchMatMul()->adj_y(); }
PrimitiveC *BatchMatMulCreator(const schema::Primitive *primitive) {
return PrimitiveC::NewPrimitiveC<BatchMatMul>(primitive);
}
Registry BatchMatMulRegistry(schema::PrimitiveType_BatchMatMul, BatchMatMulCreator);
#endif
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,46 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef LITE_MINDSPORE_LITE_C_OPS_BATCH_MATMUL_H_
#define LITE_MINDSPORE_LITE_C_OPS_BATCH_MATMUL_H_
#include <vector>
#include <set>
#include <cmath>
#include "src/ops/primitive_c.h"
namespace mindspore {
namespace lite {
class BatchMatMul : public PrimitiveC {
public:
BatchMatMul() = default;
~BatchMatMul() = default;
#ifdef PRIMITIVE_WRITEABLE
MS_DECLARE_PARENT(BatchMatMul, PrimitiveC);
explicit BatchMatMul(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {}
int UnPackAttr(const Primitive &prim, const std::vector<AnfNodePtr> &inputs) override;
void SetAdjX(bool adj_x);
void SetAdjY(bool adj_y);
#else
int UnPackToFlatBuilder(const schema::Primitive *primitive, flatbuffers::FlatBufferBuilder *fbb) override;
#endif
bool GetAdjX() const;
bool GetAdjY() const;
};
} // namespace lite
} // namespace mindspore
#endif // LITE_MINDSPORE_LITE_C_OPS_BATCH_MATMUL_H_

View File

@ -0,0 +1,33 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/ops/primitive_c.h"
#ifndef LITE_MINDSPORE_LITE_C_OPS_IS_FINITE_H_
#define LITE_MINDSPORE_LITE_C_OPS_IS_FINITE_H_
namespace mindspore {
namespace lite {
class IsFinite : public PrimitiveC {
public:
MS_DECLARE_PARENT(IsFinite, PrimitiveC);
IsFinite() = default;
~IsFinite() = default;
explicit IsFinite(schema::PrimitiveT *primitive) : PrimitiveC(primitive) {}
};
} // namespace lite
} // namespace mindspore
#endif // LITE_MINDSPORE_LITE_C_OPS_IS_FINITE_H_

View File

@ -170,6 +170,8 @@
#include "src/ops/crop_and_resize.h"
#include "src/ops/nonzero.h"
#include "src/ops/erf.h"
#include "src/ops/is_finite.h"
#include "src/ops/batch_matmul.h"
#ifdef SUPPORT_TRAIN
#include "src/ops/neg_grad.h"
@ -665,7 +667,6 @@ std::shared_ptr<PrimitiveC> PrimitiveC::Create(const Primitive &prim, const std:
return NewPrimitiveC<ArgMax>(prim, inputs, quantType);
} else if (op_type == "Gelu") {
return NewPrimitiveC<GeLU>(prim, inputs, quantType);
#ifdef SUPPORT_TRAIN
} else if (op_type == "SoftmaxCrossEntropyWithLogits") {
return NewPrimitiveC<SoftmaxCrossEntropy>(prim, inputs, quantType);
@ -1034,6 +1035,10 @@ PrimitiveC *PrimitiveC::Create(mindspore::schema::PrimitiveT *primitive) {
return new (std::nothrow) NonZero(primitive);
case schema::PrimitiveType_Erf:
return new (std::nothrow) Erf(primitive);
case schema::PrimitiveType_IsFinite:
return new (std::nothrow) IsFinite(primitive);
case schema::PrimitiveType_BatchMatMul:
return new (std::nothrow) BatchMatMul(primitive);
#ifdef SUPPORT_TRAIN
case schema::PrimitiveType_ActivationGrad:
return new (std::nothrow) ActivationGrad(primitive);

View File

@ -29,6 +29,18 @@
namespace mindspore {
namespace lite {
template <typename T>
int CreateOperator(const std::unique_ptr<schema::PrimitiveT> &primitive, schema::PrimitiveType type) {
auto attr = std::make_unique<T>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
primitive->value.type = type;
primitive->value.value = attr.release();
return RET_OK;
}
using STATUS = int;
STATUS BroadCastQuantParam(schema::MetaGraphT *graphT, const std::unique_ptr<schema::CNodeT> &node);
@ -91,6 +103,226 @@ STATUS GetFilterDim(const std::vector<int32_t> &oriDims, kTransFilterType type,
STATUS SetFilterDim(schema::TensorT *tensor, kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH,
int32_t filterW);
template <typename T>
static void TransKHWC2CHWK(int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW, T *srcData, T *dstData) {
T *p1Buff = nullptr;
T *p2Buff = nullptr;
for (int k = 0; k < filterK; ++k) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int c = 0; c < filterC; ++c) {
p1Buff = srcData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
p2Buff = dstData + ((c * filterK * filterH * filterW) + (h * filterK * filterW) + (w * filterK) + (k));
*p2Buff = *p1Buff;
}
}
}
}
}
template <typename T>
static void TransKHWC2HWCK(int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW, T *srcData, T *dstData) {
T *p1Buff = nullptr;
T *p2Buff = nullptr;
for (int k = 0; k < filterK; ++k) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int c = 0; c < filterC; ++c) {
p1Buff = srcData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
p2Buff = dstData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
*p2Buff = *p1Buff;
}
}
}
}
}
template <typename T>
static void TransCKHW(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
T *srcData, T *dstData) {
T *p1Buff = nullptr;
T *p2Buff = nullptr;
for (int c = 0; c < filterC; ++c) {
for (int k = 0; k < filterK; ++k) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
p1Buff = srcData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
if (type == kCKHW2HWCK) {
p2Buff = dstData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
} else if (type == kCKHW2KHWC) {
p2Buff = dstData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
} else {
p2Buff = dstData + ((h * filterW * filterK * filterC) + (w * filterK * filterC) + (k * filterC) + (c));
}
*p2Buff = *p1Buff;
}
}
}
}
}
template <typename T>
static void TransKCHW(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
T *srcData, T *dstData) {
T *p1Buff = nullptr;
T *p2Buff = nullptr;
for (int k = 0; k < filterK; ++k) {
for (int c = 0; c < filterC; ++c) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
p1Buff = srcData + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
if (type == kKCHW2HWCK) {
p2Buff = dstData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
} else if (type == kKCHW2KHWC) {
p2Buff = dstData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
} else if (type == kKCHW2CKHW) {
p2Buff = dstData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
} else {
p2Buff = dstData + ((h * filterW * filterK * filterC) + (w * filterK * filterC) + (k * filterC) + (c));
}
*p2Buff = *p1Buff;
}
}
}
}
}
template <typename T>
static void TransCHWK(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
T *srcData, T *dstData) {
T *p1Buff = nullptr;
T *p2Buff = nullptr;
for (int c = 0; c < filterC; ++c) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int k = 0; k < filterK; ++k) {
p1Buff = srcData + ((c * filterH * filterW * filterK) + (h * filterW * filterK) + (w * filterK) + (k));
if (type == kCHWK2HWCK) {
p2Buff = dstData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
} else {
p2Buff = dstData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
}
*p2Buff = *p1Buff;
}
}
}
}
}
template <typename T>
static void TransHWCK(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
T *srcData, T *dstData) {
T *p1Buff = nullptr;
T *p2Buff = nullptr;
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int c = 0; c < filterC; ++c) {
for (int k = 0; k < filterK; ++k) {
p1Buff = srcData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
if (type == kHWCK2KCHW) {
p2Buff = dstData + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
} else {
p2Buff = dstData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
}
*p2Buff = *p1Buff;
}
}
}
}
}
template <typename T>
static void TransHWKC(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
T *srcData, T *dstData) {
T *p1Buff = nullptr;
T *p2Buff = nullptr;
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int c = 0; c < filterC; ++c) {
for (int k = 0; k < filterK; ++k) {
p1Buff = srcData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (k * filterC) + (c));
if (type == kHWKC2KCHW) {
p2Buff = dstData + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
} else {
p2Buff = dstData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
}
*p2Buff = *p1Buff;
}
}
}
}
}
template <typename T>
static void TransNHWC(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
T *srcData, T *dstData) {
T *p1Buff = nullptr;
T *p2Buff = nullptr;
for (int k = 0; k < filterK; ++k) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int c = 0; c < filterC; ++c) {
p1Buff = srcData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (k * filterC) + (c));
if (type == kNHWC2HWCK) {
p2Buff = dstData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
} else if (type == kNHWC2CKHW) {
p2Buff = dstData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
} else {
p2Buff = dstData + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
}
*p2Buff = *p1Buff;
}
}
}
}
}
template <typename T>
static STATUS TransFilterData(kTransFilterType type, int32_t filterK, int32_t filterC, int32_t filterH, int32_t filterW,
T *srcData, T *dstData) {
switch (type) {
case kCHWK2HWCK:
case kCHWK2KHWC: {
TransCHWK(type, filterK, filterC, filterH, filterW, srcData, dstData);
} break;
case kKHWC2HWCK: {
TransKHWC2HWCK(filterK, filterC, filterH, filterW, srcData, dstData);
} break;
case kKCHW2HWCK:
case kKCHW2CKHW:
case kKCHW2KHWC:
case kKCHW2HWKC: {
TransKCHW(type, filterK, filterC, filterH, filterW, srcData, dstData);
} break;
case kCKHW2HWCK:
case kCKHW2KHWC:
case kCKHW2HWKC: {
TransCKHW(type, filterK, filterC, filterH, filterW, srcData, dstData);
} break;
case kHWCK2KCHW:
case kHWCK2CKHW: {
TransHWCK(type, filterK, filterC, filterH, filterW, srcData, dstData);
} break;
case kHWKC2KCHW:
case kHWKC2CKHW: {
TransHWKC(type, filterK, filterC, filterH, filterW, srcData, dstData);
} break;
case kNHWC2HWCK:
case kNHWC2KCHW:
case kNHWC2CKHW: {
TransNHWC(type, filterK, filterC, filterH, filterW, srcData, dstData);
} break;
case kKHWC2CHWK: {
TransKHWC2CHWK(filterK, filterC, filterH, filterW, srcData, dstData);
} break;
default: {
MS_LOG(ERROR) << "Unsupported transFilterType: " << type;
return RET_ERROR;
}
}
return RET_OK;
}
template <typename T>
static STATUS TransFilterData(schema::TensorT *tensor, kTransFilterType type, int32_t filterK, int32_t filterC,
int32_t filterH, int32_t filterW) {
@ -113,175 +345,10 @@ static STATUS TransFilterData(schema::TensorT *tensor, kTransFilterType type, in
MS_LOG(ERROR) << "weightData is nullptr";
return RET_ERROR;
}
T *p1Buff = nullptr;
T *p2Buff = nullptr;
switch (type) {
case kCHWK2HWCK:
case kCHWK2KHWC: {
for (int c = 0; c < filterC; ++c) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int k = 0; k < filterK; ++k) {
p1Buff = weightData + ((c * filterH * filterW * filterK) + (h * filterW * filterK) + (w * filterK) + (k));
if (type == kCHWK2HWCK) {
p2Buff =
buf.get() + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
} else {
p2Buff =
buf.get() + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
}
*p2Buff = *p1Buff;
}
}
}
}
} break;
case kKHWC2HWCK: {
for (int k = 0; k < filterK; ++k) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int c = 0; c < filterC; ++c) {
p1Buff = weightData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
p2Buff = buf.get() + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
*p2Buff = *p1Buff;
}
}
}
}
} break;
case kKCHW2HWCK:
case kKCHW2CKHW:
case kKCHW2KHWC:
case kKCHW2HWKC: {
for (int k = 0; k < filterK; ++k) {
for (int c = 0; c < filterC; ++c) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
p1Buff = weightData + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
if (type == kKCHW2HWCK) {
p2Buff =
buf.get() + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
} else if (type == kKCHW2KHWC) {
p2Buff =
buf.get() + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
} else if (type == kKCHW2CKHW) {
p2Buff =
buf.get() + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
} else {
p2Buff =
buf.get() + ((h * filterW * filterK * filterC) + (w * filterK * filterC) + (k * filterC) + (c));
}
*p2Buff = *p1Buff;
}
}
}
}
} break;
case kCKHW2HWCK:
case kCKHW2KHWC:
case kCKHW2HWKC: {
for (int c = 0; c < filterC; ++c) {
for (int k = 0; k < filterK; ++k) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
p1Buff = weightData + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
if (type == kCKHW2HWCK) {
p2Buff =
buf.get() + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
} else if (type == kCKHW2KHWC) {
p2Buff =
buf.get() + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
} else {
p2Buff =
buf.get() + ((h * filterW * filterK * filterC) + (w * filterK * filterC) + (k * filterC) + (c));
}
*p2Buff = *p1Buff;
}
}
}
}
} break;
case kHWCK2KCHW:
case kHWCK2CKHW: {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int c = 0; c < filterC; ++c) {
for (int k = 0; k < filterK; ++k) {
p1Buff = weightData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
if (type == kHWCK2KCHW) {
p2Buff =
buf.get() + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
} else {
p2Buff =
buf.get() + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
}
*p2Buff = *p1Buff;
}
}
}
}
} break;
case kHWKC2KCHW:
case kHWKC2CKHW: {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int c = 0; c < filterC; ++c) {
for (int k = 0; k < filterK; ++k) {
p1Buff = weightData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (k * filterC) + (c));
if (type == kHWKC2KCHW) {
p2Buff =
buf.get() + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
} else {
p2Buff =
buf.get() + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
}
*p2Buff = *p1Buff;
}
}
}
}
} break;
case kNHWC2HWCK:
case kNHWC2KCHW:
case kNHWC2CKHW: {
for (int k = 0; k < filterK; ++k) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int c = 0; c < filterC; ++c) {
p1Buff = weightData + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (k * filterC) + (c));
if (type == kNHWC2HWCK) {
p2Buff =
buf.get() + ((h * filterW * filterC * filterK) + (w * filterC * filterK) + (c * filterK) + (k));
} else if (type == kNHWC2CKHW) {
p2Buff =
buf.get() + ((c * filterK * filterH * filterW) + (k * filterH * filterW) + (h * filterW) + (w));
} else {
p2Buff =
buf.get() + ((k * filterC * filterH * filterW) + (c * filterH * filterW) + (h * filterW) + (w));
}
*p2Buff = *p1Buff;
}
}
}
}
} break;
case kKHWC2CHWK: {
for (int k = 0; k < filterK; ++k) {
for (int h = 0; h < filterH; ++h) {
for (int w = 0; w < filterW; ++w) {
for (int c = 0; c < filterC; ++c) {
p1Buff = weightData + ((k * filterH * filterW * filterC) + (h * filterW * filterC) + (w * filterC) + (c));
p2Buff = buf.get() + ((c * filterK * filterH * filterW) + (h * filterK * filterW) + (w * filterK) + (k));
*p2Buff = *p1Buff;
}
}
}
}
} break;
default: {
MS_LOG(ERROR) << "Unsupported transFilterType: " << type;
return RET_ERROR;
}
if (TransFilterData(type, filterK, filterC, filterH, filterW, weightData, buf.get()) != RET_OK) {
MS_LOG(ERROR) << "TransFilterData failed";
return RET_ERROR;
}
auto ret = ::memcpy_s(tensor->data.data(), count * sizeof(T), buf.get(), count * sizeof(T));

View File

@ -19,22 +19,11 @@
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
#include "tools/common/node_util.h"
namespace mindspore {
namespace lite {
template <typename T>
int CreateOperator(const std::unique_ptr<schema::PrimitiveT> &primitive, schema::PrimitiveType type) {
auto attr = std::make_unique<T>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new attr failed";
return RET_NULL_PTR;
}
primitive->value.type = type;
primitive->value.value = attr.release();
return RET_OK;
}
STATUS TFArithmeticSelfParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
@ -61,6 +50,12 @@ STATUS TFArithmeticSelfParser::Parse(const tensorflow::NodeDef &tf_op,
status = CreateOperator<schema::LogT>(primitive, schema::PrimitiveType_Log);
} else if (tf_op.op() == "Sqrt") {
status = CreateOperator<schema::SqrtT>(primitive, schema::PrimitiveType_Sqrt);
} else if (tf_op.op() == "Cos") {
status = CreateOperator<schema::CosT>(primitive, schema::PrimitiveType_Cos);
} else if (tf_op.op() == "Sin") {
status = CreateOperator<schema::SinT>(primitive, schema::PrimitiveType_Sin);
} else if (tf_op.op() == "Square") {
status = CreateOperator<schema::SquareT>(primitive, schema::PrimitiveType_Square);
} else if (tf_op.op() == "Pow") {
status = CreateOperator<schema::PowerT>(primitive, schema::PrimitiveType_Power);
}
@ -81,6 +76,9 @@ STATUS TFArithmeticSelfParser::Parse(const tensorflow::NodeDef &tf_op,
}
return status;
}
TFNodeRegistrar g_tfCosParser("Cos", new TFArithmeticSelfParser());
TFNodeRegistrar g_tfSinParser("Sin", new TFArithmeticSelfParser());
TFNodeRegistrar g_tfSquareParser("Square", new TFArithmeticSelfParser());
TFNodeRegistrar g_tfCeilParser("Ceil", new TFArithmeticSelfParser());
TFNodeRegistrar g_tfExpParser("Exp", new TFArithmeticSelfParser());
TFNodeRegistrar g_tfFloorParser("Floor", new TFArithmeticSelfParser());

View File

@ -0,0 +1,64 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_batch_matmul_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFBatchMatmulParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "primitive is nullptr";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::BatchMatMulT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
}
tensorflow::AttrValue attr_value;
TensorFlowUtils::FindAttrValue(tf_op, "adj_x", &attr_value);
attr->adj_x = attr_value.b();
attr->adj_y = attr_value.b();
primitive->value.type = schema::PrimitiveType_BatchMatMul;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
for (int i = 0; i < tf_op.input_size(); i++) {
inputs->emplace_back(tf_op.input(i));
}
return RET_OK;
}
TFNodeRegistrar g_tfBatchMatMulParser("BatchMatMul", new TFBatchMatmulParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_BATCH_MATMUL_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_BATCH_MATMUL_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFBatchMatmulParser : public TFNodeParser {
public:
TFBatchMatmulParser() = default;
~TFBatchMatmulParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_BATCH_MATMUL_PARSER_H_

View File

@ -0,0 +1,59 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_is_finite_parser.h"
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
#include "tools/common/node_util.h"
namespace mindspore {
namespace lite {
STATUS TFIsFiniteParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "primitive is nullptr";
return RET_NULL_PTR;
}
int status = CreateOperator<schema::IsFiniteT>(primitive, schema::PrimitiveType_IsFinite);
if (status != RET_OK) {
return status;
}
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = 1;
for (int i = 0; i < tf_op.input_size(); i++) {
inputs->emplace_back(tf_op.input(i));
}
return RET_OK;
}
TFNodeRegistrar g_tf_is_finite_parser("IsFinite", new TFIsFiniteParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_IS_FINITE_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_IS_FINITE_PARSER_H_
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFIsFiniteParser : public TFNodeParser {
public:
TFIsFiniteParser() = default;
~TFIsFiniteParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_IS_FINITE_PARSER_H_

View File

@ -19,6 +19,7 @@
#include <string>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
#include "tools/common/node_util.h"
namespace mindspore {
namespace lite {
@ -36,37 +37,19 @@ STATUS TFLogicalParser::Parse(const tensorflow::NodeDef &tf_op,
MS_LOG(ERROR) << "primitive is nullptr";
return RET_NULL_PTR;
}
int status = RET_ERROR;
if (tf_op.op() == "LogicalAnd") {
auto attr = std::make_unique<schema::LogicalAndT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
}
primitive->value.type = schema::PrimitiveType_LogicalAnd;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
status = CreateOperator<schema::LogicalAndT>(primitive, schema::PrimitiveType_LogicalAnd);
} else if (tf_op.op() == "LogicalOr") {
auto attr = std::make_unique<schema::LogicalOrT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
}
primitive->value.type = schema::PrimitiveType_LogicalOr;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
status = CreateOperator<schema::LogicalOrT>(primitive, schema::PrimitiveType_LogicalOr);
} else if (tf_op.op() == "LogicalNot") {
auto attr = std::make_unique<schema::LogicalNotT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
}
primitive->value.type = schema::PrimitiveType_LogicalNot;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
} else {
MS_LOG(ERROR) << tf_op.op() << " is not supported.";
return RET_ERROR;
status = CreateOperator<schema::LogicalNotT>(primitive, schema::PrimitiveType_LogicalNot);
}
if (status != RET_OK) {
return status;
}
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
@ -79,8 +62,8 @@ STATUS TFLogicalParser::Parse(const tensorflow::NodeDef &tf_op,
return RET_OK;
}
TFNodeRegistrar g_tfLogicalAndParser("LogicalAnd", new TFLogicalParser());
TFNodeRegistrar g_tfLogicalOrParser("LogicalOr", new TFLogicalParser());
TFNodeRegistrar g_tfLogicalNotParser("LogicalNot", new TFLogicalParser());
TFNodeRegistrar g_tfLogicalOrParser("LogicalOr", new TFLogicalParser());
TFNodeRegistrar g_tfLogicalAndParser("LogicalAnd", new TFLogicalParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,60 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tools/converter/parser/tf/tf_zeros_like_parser.h"
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser_registry.h"
namespace mindspore {
namespace lite {
STATUS TFZerosLikeParser::Parse(const tensorflow::NodeDef &tf_op,
const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) {
if (primitiveC == nullptr || output_size == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_NULL_PTR;
}
auto primitive = std::make_unique<schema::PrimitiveT>();
if (primitive == nullptr) {
MS_LOG(ERROR) << "primitive is nullptr";
return RET_NULL_PTR;
}
auto attr = std::make_unique<schema::ZerosLikeT>();
if (attr == nullptr) {
MS_LOG(ERROR) << "new op failed";
return RET_NULL_PTR;
}
primitive->value.type = schema::PrimitiveType_ZerosLike;
primitive->value.value = attr.release();
*primitiveC = PrimitiveC::Create(primitive.release());
if (*primitiveC == nullptr) {
MS_LOG(ERROR) << "primitiveC is nullptr";
return RET_ERROR;
}
*output_size = tf_op.input_size();
for (int i = 0; i < tf_op.input_size(); i++) {
inputs->emplace_back(tf_op.input(i));
}
return RET_OK;
}
TFNodeRegistrar g_tfZerosLikeParser("ZerosLike", new TFZerosLikeParser());
} // namespace lite
} // namespace mindspore

View File

@ -0,0 +1,37 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_ZERO_LIKE_PARSER_H_
#define MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_ZERO_LIKE_PARSER_H_
#include <string>
#include <memory>
#include <map>
#include <vector>
#include "tools/converter/parser/tf/tf_node_parser.h"
namespace mindspore {
namespace lite {
class TFZerosLikeParser : public TFNodeParser {
public:
TFZerosLikeParser() = default;
~TFZerosLikeParser() override = default;
STATUS Parse(const tensorflow::NodeDef &tf_op, const std::map<string, const tensorflow::NodeDef *> &tf_node_map,
PrimitiveC **primitiveC, std::vector<std::string> *inputs, int *output_size) override;
};
} // namespace lite
} // namespace mindspore
#endif // MINDSPORE_LITE_TOOLS_CONVERTER_PARSER_TF_TF_ZERO_LIKE_PARSER_H_