add reduceany and reduceall to cpu

This commit is contained in:
yanglf1121 2021-02-05 14:09:12 +08:00
parent 98f380b6e1
commit 01bfacddd6
4 changed files with 296 additions and 3 deletions

View File

@ -0,0 +1,185 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <vector>
#include <deque>
#include <algorithm>
#include <map>
#include "backend/kernel_compiler/cpu/reduce_logic_cpu_kernel.h"
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
const size_t kReduceTypeAll = 1;
const size_t kReduceTypeAny = 2;
const size_t kMaxDim = 100;
static std::map<std::string, int> reduce_types_map_ = {{"ReduceAll", 1}, {"ReduceAny", 2}};
template <typename T>
void ReduceLogicCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
reduce_type_ = reduce_types_map_[kernel_name];
if (reduce_type_ == 0) {
MS_LOG(EXCEPTION) << "Array reduce kernel type " << kernel_name << " is not supported.";
}
shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
CheckAxis(kernel_node);
if (shape_.empty()) {
shape_.push_back(1);
}
for (size_t i = 0; i < shape_.size(); ++i) {
if (shape_[i] <= 0) {
MS_LOG(EXCEPTION) << "shape value is invalid.";
}
left_dims_ *= shape_[i];
}
for (size_t i = 0; i < axis_.size(); ++i) {
stride_ *= shape_[axis_[i]];
}
if (stride_ <= 0) {
MS_LOG(EXCEPTION) << "stride_ must greater than zero.";
}
left_dims_ = left_dims_ / stride_;
}
template <typename T>
bool ReduceLogicCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspaces*/,
const std::vector<kernel::AddressPtr> &outputs) {
size_t out_size = left_dims_ * sizeof(T);
size_t in_size = stride_ * out_size;
if (inputs[0]->size != in_size || outputs[0]->size != out_size) {
MS_LOG(EXCEPTION) << "invalid input or output data size!";
}
auto input = reinterpret_cast<T *>(inputs[0]->addr);
auto output = reinterpret_cast<T *>(outputs[0]->addr);
int size = inputs[0]->size / sizeof(T);
std::deque<T> new_inputs(IntToSize(size), false);
std::vector<size_t> transpose_axis;
for (size_t i = 0; i < shape_.size(); ++i) {
bool insert = true;
for (size_t j = 0; j < axis_.size(); ++j) {
if (axis_[j] == i) {
insert = false;
break;
}
}
if (insert) {
transpose_axis.push_back(i);
}
}
(void)transpose_axis.insert(transpose_axis.end(), axis_.begin(), axis_.end());
Transpose(size, input, shape_, transpose_axis, SizeToInt(shape_.size()), &new_inputs[0]);
ConvertDataToOutput(&new_inputs[0], output);
return true;
}
template <typename T>
void ReduceLogicCPUKernel<T>::CheckAxis(const CNodePtr &kernel_node) {
auto axis_addr = AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr(AXIS);
if (axis_addr->isa<ValueTuple>() || axis_addr->isa<ValueList>()) {
std::vector<int> attr_axis;
std::vector<int64_t> attr_axis_me = AnfAlgo::GetNodeAttr<std::vector<int64_t>>(kernel_node, AXIS);
(void)std::transform(attr_axis_me.begin(), attr_axis_me.end(), std::back_inserter(attr_axis),
[](const int64_t &value) { return static_cast<int>(value); });
if (attr_axis.size() > shape_.size()) {
MS_LOG(EXCEPTION) << "invalid axis size: " << axis_.size();
} else if (attr_axis.empty()) {
for (size_t i = 0; i < shape_.size(); ++i) {
axis_.push_back(i);
}
} else {
for (auto axis : attr_axis) {
while (axis < 0) {
axis += SizeToInt(shape_.size());
}
if (IntToSize(axis) >= (shape_.size())) {
MS_LOG(EXCEPTION) << "axis value is oversize.";
}
axis_.push_back(IntToSize(axis));
}
}
} else if (axis_addr->isa<Int64Imm>()) {
int axis = static_cast<int64_t>(AnfAlgo::GetNodeAttr<int64_t>(kernel_node, AXIS));
while (axis < 0) {
axis += SizeToInt(shape_.size());
}
if (IntToSize(axis) >= shape_.size()) {
MS_LOG(EXCEPTION) << "axis value is oversize.";
}
axis_.push_back(IntToSize(axis));
} else {
MS_LOG(EXCEPTION) << "Attribute axis type is invalid.";
}
}
template <typename T>
void ReduceLogicCPUKernel<T>::ConvertDataToOutput(const T *new_input, T *output) {
if (reduce_type_ == kReduceTypeAll) {
for (size_t i = 0; i < left_dims_; ++i) {
auto value{true};
for (size_t k = 0; k < stride_; ++k) {
value &= new_input[i * stride_ + k];
}
output[i] = value;
}
} else if (reduce_type_ == kReduceTypeAny) {
for (size_t i = 0; i < left_dims_; ++i) {
auto value{false};
for (size_t k = 0; k < stride_; ++k) {
value |= new_input[i * stride_ + k];
}
output[i] = value;
}
} else {
MS_LOG(EXCEPTION) << "Array reduce kernel type " << reduce_type_ << " is not supported.";
}
}
template <typename T>
void ReduceLogicCPUKernel<T>::Transpose(const int size, const T *input, const std::vector<size_t> &input_shape,
const std::vector<size_t> &input_axis, const int shape_size, T *output) {
int size_offset[kMaxDim];
size_offset[0] = size / SizeToInt(input_shape[0]);
for (int i = 1; i < shape_size; ++i) {
size_offset[i] = size_offset[i - 1] / SizeToInt(input_shape[i]);
}
auto task = [&](size_t start, size_t end) {
int pos_array[kMaxDim];
for (size_t position = start; position < end; position += 1) {
size_t temp_position = position;
pos_array[0] = temp_position / size_offset[0];
for (int i = 1; i < shape_size; ++i) {
temp_position -= pos_array[i - 1] * size_offset[i - 1];
pos_array[i] = temp_position / size_offset[i];
}
size_t new_position = pos_array[SizeToInt(input_axis[shape_size - 1])];
size_t new_position_size = 1;
for (int j = shape_size - 2; j >= 0; j--) {
new_position_size *= SizeToInt(input_shape[SizeToInt(input_axis[j + 1])]);
new_position += pos_array[SizeToInt(input_axis[j])] * new_position_size;
}
output[new_position] = input[position];
}
};
CPUKernelUtils::ParallelFor(task, size);
return;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,53 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_REDUCE_LOGIC_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_REDUCE_LOGIC_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include <string>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
template <typename T>
class ReduceLogicCPUKernel : public CPUKernel {
public:
ReduceLogicCPUKernel() = default;
~ReduceLogicCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
void Transpose(const int size, const T *input, const std::vector<size_t> &input_shape,
const std::vector<size_t> &input_axis, const int shape_size, T *output);
void ConvertDataToOutput(const T *input, T *output);
void CheckAxis(const CNodePtr &kernel_node);
size_t reduce_type_ = 0;
std::vector<size_t> axis_;
std::vector<size_t> shape_;
size_t left_dims_ = 1;
size_t stride_ = 1;
};
MS_REG_CPU_KERNEL_T(ReduceAll, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
ReduceLogicCPUKernel, bool);
MS_REG_CPU_KERNEL_T(ReduceAny, KernelAttr().AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeBool),
ReduceLogicCPUKernel, bool);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_REDUCE_LOGIC_CPU_KERNEL_H_

View File

@ -472,7 +472,7 @@ class ReduceAll(_Reduce):
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[True, False], [True, True]]))
@ -514,7 +514,7 @@ class ReduceAny(_Reduce):
the shape of output is :math:`(x_1, x_4, ..., x_R)`.
Supported Platforms:
``Ascend`` ``GPU``
``Ascend`` ``GPU`` ``CPU``
Examples:
>>> input_x = Tensor(np.array([[True, False], [True, True]]))

View File

@ -1,4 +1,4 @@
# Copyright 2020 Huawei Technologies Co., Ltd
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -61,6 +61,27 @@ class NetReduce(nn.Cell):
self.reduce_min(indice, self.axis6))
class NetReduceLogic(nn.Cell):
def __init__(self):
super(NetReduceLogic, self).__init__()
self.axis0 = 0
self.axis1 = -1
self.axis2 = (0, 1, 2)
self.axis3 = ()
self.reduce_all = P.ReduceAll(False)
self.reduce_any = P.ReduceAny(False)
@ms_function
def construct(self, indice):
return (self.reduce_all(indice, self.axis0),
self.reduce_all(indice, self.axis1),
self.reduce_all(indice, self.axis2),
self.reduce_all(indice, self.axis3),
self.reduce_any(indice, self.axis0),
self.reduce_any(indice, self.axis1),
self.reduce_any(indice, self.axis2),
self.reduce_any(indice, self.axis3),)
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@ -125,4 +146,38 @@ def test_reduce():
assert (output[16].asnumpy() == expect_11).all()
assert (output[17].asnumpy() == 0.0).all()
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_reduce_logic():
reduce_logic = NetReduceLogic()
indice_bool = Tensor([[[False, True, True, True, False, True],
[True, True, True, True, True, False]],
[[True, False, True, True, False, True],
[True, False, False, True, True, True]],
[[True, True, True, False, False, False],
[True, True, True, False, True, True]]])
output = reduce_logic(indice_bool)
expect_all_1 = np.array([[False, False, True, False, False, False],
[True, False, False, False, True, False]])
expect_all_2 = np.array([[False, False], [False, False], [False, False]])
expect_all_3 = False
expect_all_4 = False
expect_any_1 = np.array([[True, True, True, True, False, True], [True, True, True, True, True, True]])
expect_any_2 = np.array([[True, True], [True, True], [True, True]])
expect_any_3 = True
expect_any_4 = True
assert (output[0].asnumpy() == expect_all_1).all()
assert (output[1].asnumpy() == expect_all_2).all()
assert (output[2].asnumpy() == expect_all_3).all()
assert (output[3].asnumpy() == expect_all_4).all()
assert (output[4].asnumpy() == expect_any_1).all()
assert (output[5].asnumpy() == expect_any_2).all()
assert (output[6].asnumpy() == expect_any_3).all()
assert (output[7].asnumpy() == expect_any_4).all()
test_reduce()
test_reduce_logic()