2020-03-27 14:49:12 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
"""Resnet examples."""
|
|
|
|
|
|
|
|
# pylint: disable=missing-docstring, arguments-differ
|
|
|
|
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
|
|
|
|
def conv3x3(in_channels, out_channels, stride=1, padding=1, pad_mode='pad'):
|
|
|
|
"""3x3 convolution """
|
|
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
|
|
kernel_size=3, stride=stride, padding=padding, pad_mode=pad_mode)
|
|
|
|
|
|
|
|
|
|
|
|
def conv1x1(in_channels, out_channels, stride=1, padding=0, pad_mode='pad'):
|
|
|
|
"""1x1 convolution"""
|
|
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
|
|
kernel_size=1, stride=stride, padding=padding, pad_mode=pad_mode)
|
|
|
|
|
|
|
|
|
|
|
|
class ResidualBlock(nn.Cell):
|
|
|
|
"""
|
|
|
|
residual Block
|
|
|
|
"""
|
|
|
|
expansion = 4
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
stride=1,
|
|
|
|
down_sample=False):
|
|
|
|
super(ResidualBlock, self).__init__()
|
|
|
|
|
|
|
|
out_chls = out_channels // self.expansion
|
|
|
|
self.conv1 = conv1x1(in_channels, out_chls, stride=1, padding=0)
|
|
|
|
self.bn1 = nn.BatchNorm2d(out_chls)
|
|
|
|
|
|
|
|
self.conv2 = conv3x3(out_chls, out_chls, stride=stride, padding=1)
|
|
|
|
self.bn2 = nn.BatchNorm2d(out_chls)
|
|
|
|
|
|
|
|
self.conv3 = conv1x1(out_chls, out_channels, stride=1, padding=0)
|
|
|
|
self.bn3 = nn.BatchNorm2d(out_channels)
|
|
|
|
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
self.downsample = down_sample
|
|
|
|
|
|
|
|
self.conv_down_sample = conv1x1(in_channels, out_channels,
|
|
|
|
stride=stride, padding=0)
|
|
|
|
self.bn_down_sample = nn.BatchNorm2d(out_channels)
|
|
|
|
self.add = P.TensorAdd()
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
"""
|
|
|
|
:param x:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
identity = x
|
|
|
|
|
|
|
|
out = self.conv1(x)
|
|
|
|
out = self.bn1(out)
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
out = self.conv2(out)
|
|
|
|
out = self.bn2(out)
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
out = self.conv3(out)
|
|
|
|
out = self.bn3(out)
|
|
|
|
|
|
|
|
if self.downsample:
|
|
|
|
identity = self.conv_down_sample(identity)
|
|
|
|
identity = self.bn_down_sample(identity)
|
|
|
|
|
|
|
|
out = self.add(out, identity)
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class ResNet50(nn.Cell):
|
|
|
|
"""
|
|
|
|
resnet nn.Cell
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, block, num_classes=100):
|
|
|
|
super(ResNet50, self).__init__()
|
|
|
|
|
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, pad_mode='pad')
|
|
|
|
self.bn1 = nn.BatchNorm2d(64)
|
|
|
|
self.relu = nn.ReLU()
|
2020-04-02 11:58:45 +08:00
|
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='valid')
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
self.layer1 = self.MakeLayer(
|
|
|
|
block, 3, in_channels=64, out_channels=256, stride=1)
|
|
|
|
self.layer2 = self.MakeLayer(
|
|
|
|
block, 4, in_channels=256, out_channels=512, stride=2)
|
|
|
|
self.layer3 = self.MakeLayer(
|
|
|
|
block, 6, in_channels=512, out_channels=1024, stride=2)
|
|
|
|
self.layer4 = self.MakeLayer(
|
|
|
|
block, 3, in_channels=1024, out_channels=2048, stride=2)
|
|
|
|
|
|
|
|
self.avgpool = nn.AvgPool2d(7, 1)
|
|
|
|
self.flatten = P.Flatten()
|
|
|
|
self.fc = nn.Dense(512 * block.expansion, num_classes)
|
|
|
|
|
|
|
|
def MakeLayer(self, block, layer_num, in_channels, out_channels, stride):
|
|
|
|
"""
|
|
|
|
make block layer
|
|
|
|
:param block:
|
|
|
|
:param layer_num:
|
|
|
|
:param in_channels:
|
|
|
|
:param out_channels:
|
|
|
|
:param stride:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
layers = []
|
|
|
|
resblk = block(in_channels, out_channels,
|
|
|
|
stride=stride, down_sample=True)
|
|
|
|
layers.append(resblk)
|
|
|
|
|
|
|
|
for _ in range(1, layer_num):
|
|
|
|
resblk = block(out_channels, out_channels, stride=1)
|
|
|
|
layers.append(resblk)
|
|
|
|
|
|
|
|
return nn.SequentialCell(layers)
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
"""
|
|
|
|
:param x:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.maxpool(x)
|
|
|
|
|
|
|
|
x = self.layer1(x)
|
|
|
|
x = self.layer2(x)
|
|
|
|
x = self.layer3(x)
|
|
|
|
x = self.layer4(x)
|
|
|
|
|
|
|
|
x = self.avgpool(x)
|
|
|
|
x = self.flatten(x)
|
|
|
|
x = self.fc(x)
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
def resnet50():
|
|
|
|
return ResNet50(ResidualBlock, 10)
|