!2307 提升numeric除法性能

Merge pull request !2307 from cc_db_dev/improve_div
This commit is contained in:
opengauss-bot 2022-10-18 09:20:02 +00:00 committed by Gitee
commit 809e2ebbae
No known key found for this signature in database
GPG Key ID: 173E9B9CA92EEF8F
1 changed files with 244 additions and 119 deletions

View File

@ -236,6 +236,7 @@ static void sub_var(NumericVar* var1, NumericVar* var2, NumericVar* result);
static void mul_var(NumericVar* var1, NumericVar* var2, NumericVar* result, int rscale);
static void div_var(NumericVar* var1, NumericVar* var2, NumericVar* result, int rscale, bool round);
static void div_var_fast(NumericVar* var1, NumericVar* var2, NumericVar* result, int rscale, bool round);
static void div_var_int(const NumericVar *var, int ival, int ival_weight, NumericVar *result, int rscale, bool round);
static int select_div_scale(NumericVar* var1, NumericVar* var2);
static void mod_var(NumericVar* var1, NumericVar* var2, NumericVar* result);
static void ceil_var(NumericVar* var, NumericVar* result);
@ -5454,11 +5455,36 @@ static void div_var(NumericVar* var1, NumericVar* var2, NumericVar* result, int
*/
if (var2ndigits == 0 || var2->digits[0] == 0)
ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO), errmsg("division by zero")));
/*
* If the divisor has just one or two digits, delegate to div_var_int(),
* which uses fast short division.
*/
if (var2ndigits <= 2)
{
int idivisor;
int idivisor_weight;
idivisor = var2->digits[0];
idivisor_weight = var2->weight;
if (var2ndigits == 2)
{
idivisor = idivisor * NBASE + var2->digits[1];
idivisor_weight--;
}
if (var2->sign == NUMERIC_NEG)
idivisor = -idivisor;
div_var_int(var1, idivisor, idivisor_weight, result, rscale, round);
return;
}
/*
* Now result zero check
* Otherwise, perform full long division.
*/
if (var1ndigits == 0) {
/* Result zero check */
if (var1ndigits == 0)
{
zero_var(result);
result->dscale = rscale;
return;
@ -5515,141 +5541,130 @@ static void div_var(NumericVar* var1, NumericVar* var2, NumericVar* result, int
alloc_var(result, res_ndigits);
res_digits = result->digits;
if (var2ndigits == 1) {
/*
* If there's only a single divisor digit, we can use a fast path (cf.
* Knuth section 4.3.1 exercise 16).
*/
divisor1 = divisor[1];
/*
* The full multiple-place algorithm is taken from Knuth volume 2,
* Algorithm 4.3.1D.
*
* We need the first divisor digit to be >= NBASE/2. If it isn't,
* make it so by scaling up both the divisor and dividend by the
* factor "d". (The reason for allocating dividend[0] above is to
* leave room for possible carry here.)
*/
if (divisor[1] < HALF_NBASE) {
int d = NBASE / (divisor[1] + 1);
carry = 0;
for (i = 0; i < res_ndigits; i++) {
carry = carry * NBASE + dividend[i + 1];
res_digits[i] = carry / divisor1;
carry = carry % divisor1;
for (i = var2ndigits; i > 0; i--) {
carry += divisor[i] * d;
divisor[i] = carry % NBASE;
carry = carry / NBASE;
}
} else {
/*
* The full multiple-place algorithm is taken from Knuth volume 2,
* Algorithm 4.3.1D.
*
* We need the first divisor digit to be >= NBASE/2. If it isn't,
* make it so by scaling up both the divisor and dividend by the
* factor "d". (The reason for allocating dividend[0] above is to
* leave room for possible carry here.)
*/
if (divisor[1] < HALF_NBASE) {
int d = NBASE / (divisor[1] + 1);
Assert(carry == 0);
carry = 0;
/* at this point only var1ndigits of dividend can be nonzero */
for (i = var1ndigits; i >= 0; i--) {
carry += dividend[i] * d;
dividend[i] = carry % NBASE;
carry = carry / NBASE;
}
Assert(carry == 0);
Assert(divisor[1] >= HALF_NBASE);
}
/* First 2 divisor digits are used repeatedly in main loop */
divisor1 = divisor[1];
divisor2 = divisor[2];
carry = 0;
for (i = var2ndigits; i > 0; i--) {
carry += divisor[i] * d;
divisor[i] = carry % NBASE;
carry = carry / NBASE;
}
Assert(carry == 0);
carry = 0;
/* at this point only var1ndigits of dividend can be nonzero */
for (i = var1ndigits; i >= 0; i--) {
carry += dividend[i] * d;
dividend[i] = carry % NBASE;
carry = carry / NBASE;
}
Assert(carry == 0);
Assert(divisor[1] >= HALF_NBASE);
}
/* First 2 divisor digits are used repeatedly in main loop */
divisor1 = divisor[1];
divisor2 = divisor[2];
/*
* Begin the main loop. Each iteration of this loop produces the j'th
* quotient digit by dividing dividend[j .. j + var2ndigits] by the
* divisor; this is essentially the same as the common manual
* procedure for long division.
*/
for (j = 0; j < res_ndigits; j++) {
/* Estimate quotient digit from the first two dividend digits */
int next2digits = dividend[j] * NBASE + dividend[j + 1];
int qhat;
/*
* Begin the main loop. Each iteration of this loop produces the j'th
* quotient digit by dividing dividend[j .. j + var2ndigits] by the
* divisor; this is essentially the same as the common manual
* procedure for long division.
* If next2digits are 0, then quotient digit must be 0 and there's
* no need to adjust the working dividend. It's worth testing
* here to fall out ASAP when processing trailing zeroes in a
* dividend.
*/
for (j = 0; j < res_ndigits; j++) {
/* Estimate quotient digit from the first two dividend digits */
int next2digits = dividend[j] * NBASE + dividend[j + 1];
int qhat;
if (next2digits == 0) {
res_digits[j] = 0;
continue;
}
if (dividend[j] == divisor1)
qhat = NBASE - 1;
else
qhat = next2digits / divisor1;
/*
* Adjust quotient digit if it's too large. Knuth proves that
* after this step, the quotient digit will be either correct or
* just one too large. (Note: it's OK to use dividend[j+2] here
* because we know the divisor length is at least 2.)
*/
while (divisor2 * qhat > (next2digits - qhat * divisor1) * NBASE + dividend[j + 2])
qhat--;
/* As above, need do nothing more when quotient digit is 0 */
if (qhat > 0) {
NumericDigit *dividend_j = &dividend[j];
/*
* If next2digits are 0, then quotient digit must be 0 and there's
* no need to adjust the working dividend. It's worth testing
* here to fall out ASAP when processing trailing zeroes in a
* dividend.
*/
if (next2digits == 0) {
res_digits[j] = 0;
continue;
* Multiply the divisor by qhat, and subtract that from the
* working dividend. The multiplication and subtraction are
* folded together here, noting that qhat <= NBASE (since it might
* be one too large), and so the intermediate result "tmp_result"
* is in the range [-NBASE^2, NBASE - 1], and "borrow" is in the
* range [0, NBASE].
*/
borrow = 0;
for (i = var2ndigits; i >= 0; i--)
{
int tmp_result;
tmp_result = dividend_j[i] - borrow - divisor[i] * qhat;
borrow = (NBASE - 1 - tmp_result) / NBASE;
dividend_j[i] = tmp_result + borrow * NBASE;
}
if (dividend[j] == divisor1)
qhat = NBASE - 1;
else
qhat = next2digits / divisor1;
/*
* Adjust quotient digit if it's too large. Knuth proves that
* after this step, the quotient digit will be either correct or
* just one too large. (Note: it's OK to use dividend[j+2] here
* because we know the divisor length is at least 2.)
* If we got a borrow out of the top dividend digit, then indeed
* qhat was one too large. Fix it, and add back the divisor to
* correct the working dividend. (Knuth proves that this will
* occur only about 3/NBASE of the time; hence, it's a good idea
* to test this code with small NBASE to be sure this section gets
* exercised.)
*/
while (divisor2 * qhat > (next2digits - qhat * divisor1) * NBASE + dividend[j + 2])
if (borrow)
{
qhat--;
/* As above, need do nothing more when quotient digit is 0 */
if (qhat > 0) {
/*
* Multiply the divisor by qhat, and subtract that from the
* working dividend. "carry" tracks the multiplication,
* "borrow" the subtraction (could we fold these together?)
*/
carry = 0;
borrow = 0;
for (i = var2ndigits; i >= 0; i--) {
carry += divisor[i] * qhat;
borrow -= carry % NBASE;
carry = carry / NBASE;
borrow += dividend[j + i];
if (borrow < 0) {
dividend[j + i] = borrow + NBASE;
borrow = -1;
} else {
dividend[j + i] = borrow;
borrow = 0;
for (i = var2ndigits; i >= 0; i--)
{
carry += dividend_j[i] + divisor[i];
if (carry >= NBASE)
{
dividend_j[i] = carry - NBASE;
carry = 1;
}
else
{
dividend_j[i] = carry;
carry = 0;
}
}
Assert(carry == 0);
/*
* If we got a borrow out of the top dividend digit, then
* indeed qhat was one too large. Fix it, and add back the
* divisor to correct the working dividend. (Knuth proves
* that this will occur only about 3/NBASE of the time; hence,
* it's a good idea to test this code with small NBASE to be
* sure this section gets exercised.)
*/
if (borrow) {
qhat--;
carry = 0;
for (i = var2ndigits; i >= 0; i--) {
carry += dividend[j + i] + divisor[i];
if (carry >= NBASE) {
dividend[j + i] = carry - NBASE;
carry = 1;
} else {
dividend[j + i] = carry;
carry = 0;
}
}
/* A carry should occur here to cancel the borrow above */
Assert(carry == 1);
}
/* A carry should occur here to cancel the borrow above */
Assert(carry == 1);
}
/* And we're done with this quotient digit */
res_digits[j] = qhat;
}
/* And we're done with this quotient digit */
res_digits[j] = qhat;
}
pfree_ext(dividend);
@ -5910,6 +5925,116 @@ static void div_var_fast(NumericVar* var1, NumericVar* var2, NumericVar* result,
strip_var(result);
}
/*
* div_var_int() -
*
* Divide a numeric variable by a 32-bit integer with the specified weight.
* The quotient var / (ival * NBASE^ival_weight) is stored in result.
*/
static void
div_var_int(const NumericVar *var, int ival, int ival_weight,
NumericVar *result, int rscale, bool round)
{
NumericDigit *var_digits = var->digits;
int var_ndigits = var->ndigits;
int res_sign;
int res_weight;
int res_ndigits;
NumericDigit *res_buf;
NumericDigit *res_digits;
uint32 divisor;
int i;
/* Guard against division by zero */
if (ival == 0)
ereport(ERROR, (errcode(ERRCODE_DIVISION_BY_ZERO), errmsg("division by zero")));
/* Result zero check */
if (var_ndigits == 0)
{
zero_var(result);
result->dscale = rscale;
return;
}
/*
* Determine the result sign, weight and number of digits to calculate.
* The weight figured here is correct if the emitted quotient has no
* leading zero digits; otherwise strip_var() will fix things up.
*/
if (var->sign == NUMERIC_POS)
res_sign = ival > 0 ? NUMERIC_POS : NUMERIC_NEG;
else
res_sign = ival > 0 ? NUMERIC_NEG : NUMERIC_POS;
res_weight = var->weight - ival_weight;
/* The number of accurate result digits we need to produce: */
res_ndigits = res_weight + 1 + (rscale + DEC_DIGITS - 1) / DEC_DIGITS;
/* ... but always at least 1 */
res_ndigits = Max(res_ndigits, 1);
/* If rounding needed, figure one more digit to ensure correct result */
if (round)
res_ndigits++;
res_buf = digitbuf_alloc(res_ndigits + 1);
res_buf[0] = 0; /* spare digit for later rounding */
res_digits = res_buf + 1;
/*
* Now compute the quotient digits. This is the short division algorithm
* described in Knuth volume 2, section 4.3.1 exercise 16, except that we
* allow the divisor to exceed the internal base.
*
* In this algorithm, the carry from one digit to the next is at most
* divisor - 1. Therefore, while processing the next digit, carry may
* become as large as divisor * NBASE - 1, and so it requires a 64-bit
* integer if this exceeds UINT_MAX.
*/
divisor = Abs(ival);
if (divisor <= UINT_MAX / NBASE)
{
/* carry cannot overflow 32 bits */
uint32 carry = 0;
for (i = 0; i < res_ndigits; i++)
{
carry = carry * NBASE + (i < var_ndigits ? var_digits[i] : 0);
res_digits[i] = (NumericDigit) (carry / divisor);
carry = carry % divisor;
}
}
else
{
/* carry may exceed 32 bits */
uint64 carry = 0;
for (i = 0; i < res_ndigits; i++)
{
carry = carry * NBASE + (i < var_ndigits ? var_digits[i] : 0);
res_digits[i] = (NumericDigit) (carry / divisor);
carry = carry % divisor;
}
}
/* Store the quotient in result */
digitbuf_free(result->buf);
result->ndigits = res_ndigits;
result->buf = res_buf;
result->digits = res_digits;
result->weight = res_weight;
result->sign = res_sign;
/* Round or truncate to target rscale (and set result->dscale) */
if (round)
round_var(result, rscale);
else
trunc_var(result, rscale);
/* Strip leading/trailing zeroes */
strip_var(result);
}
/*
* Default scale selection for division
*