forked from mindspore-Ecosystem/mindspore
!317 [IRFusion] add derelu_fusion pass
Merge pull request !317 from huanghui/derelu_fusion_pass
This commit is contained in:
commit
f98efafa16
|
@ -0,0 +1,105 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "pre_activate/ascend/ir_fusion/derelu_fusion.h"
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
#include "session/anf_runtime_algorithm.h"
|
||||
#include "ir/primitive.h"
|
||||
#include "utils/utils.h"
|
||||
#include "pipeline/static_analysis/abstract_value.h"
|
||||
#include "pre_activate/common/helper.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
namespace {
|
||||
const size_t kReluV2OutputNum = 2;
|
||||
|
||||
CNodePtr GetRelu(const CNodePtr &relu_grad) {
|
||||
MS_EXCEPTION_IF_NULL(relu_grad);
|
||||
if (relu_grad->size() != kReluGradInputNum) {
|
||||
MS_LOG_EXCEPTION << "ReluGrad has wrong input size " << relu_grad->size();
|
||||
}
|
||||
auto relu_anf = relu_grad->input(2);
|
||||
MS_EXCEPTION_IF_NULL(relu_anf);
|
||||
return relu_anf->cast<CNodePtr>();
|
||||
}
|
||||
|
||||
CNodePtr CreateReluV2(const FuncGraphPtr &graph, const CNodePtr &relu) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(relu);
|
||||
if (relu->size() != kReluInputNum) {
|
||||
MS_LOG_EXCEPTION << "Relu has wrong input size " << relu->size();
|
||||
}
|
||||
|
||||
auto prim = std::make_shared<Primitive>(kReluV2OpName);
|
||||
std::vector<AnfNodePtr> inputs = {NewValueNode(prim), relu->input(1)};
|
||||
auto new_node = graph->NewCNode(inputs);
|
||||
MS_EXCEPTION_IF_NULL(new_node);
|
||||
new_node->set_scope(relu->scope());
|
||||
|
||||
// ReluV2's 2rd output is mask whose data type is uint8 and value is 0 or 1, so shape is an empty vector
|
||||
TypeId mask_dtype = kNumberTypeUInt8;
|
||||
std::vector<size_t> mask_shape;
|
||||
auto types = {AnfAlgo::GetOutputInferDataType(relu, 0), mask_dtype};
|
||||
auto shapes = {AnfAlgo::GetOutputInferShape(relu, 0), mask_shape};
|
||||
AnfAlgo::SetOutputInferTypeAndShape(types, shapes, new_node.get());
|
||||
return new_node;
|
||||
}
|
||||
|
||||
CNodePtr CreateReluGradV2(const FuncGraphPtr &graph, const CNodePtr &relu_grad, const AnfNodePtr &second_input) {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(relu_grad);
|
||||
MS_EXCEPTION_IF_NULL(second_input);
|
||||
|
||||
auto prim = std::make_shared<Primitive>(kReluGradV2OpName);
|
||||
std::vector<AnfNodePtr> inputs = {NewValueNode(prim), relu_grad->input(1), second_input};
|
||||
auto new_node = graph->NewCNode(inputs);
|
||||
MS_EXCEPTION_IF_NULL(new_node);
|
||||
new_node->set_scope(relu_grad->scope());
|
||||
new_node->set_abstract(relu_grad->abstract());
|
||||
return new_node;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
const BaseRef DereluFusion::DefinePattern() const {
|
||||
VarPtr i0 = std::make_shared<Var>();
|
||||
VarPtr i1 = std::make_shared<Var>();
|
||||
VectorRef relu({prim::kPrimRelu, i1});
|
||||
VectorRef relu_grad({prim::kPrimReluGrad, i0, relu});
|
||||
return relu_grad;
|
||||
}
|
||||
|
||||
const AnfNodePtr DereluFusion::Process(const FuncGraphPtr &graph, const AnfNodePtr &node, const EquivPtr &) const {
|
||||
MS_EXCEPTION_IF_NULL(graph);
|
||||
MS_EXCEPTION_IF_NULL(node);
|
||||
auto relu_grad = node->cast<CNodePtr>();
|
||||
MS_EXCEPTION_IF_NULL(relu_grad);
|
||||
auto relu = GetRelu(relu_grad);
|
||||
MS_EXCEPTION_IF_NULL(relu);
|
||||
|
||||
auto relu_v2 = CreateReluV2(graph, relu);
|
||||
std::vector<AnfNodePtr> relu_v2_node_outputs;
|
||||
CreateMultipleOutputsOfAnfNode(graph, relu_v2, kReluV2OutputNum, &relu_v2_node_outputs);
|
||||
|
||||
auto relu_grad_v2 = CreateReluGradV2(graph, relu_grad, relu_v2_node_outputs[1]);
|
||||
|
||||
auto manage = graph->manager();
|
||||
MS_EXCEPTION_IF_NULL(manage);
|
||||
manage->Replace(relu, relu_v2_node_outputs[0]);
|
||||
return relu_grad_v2;
|
||||
}
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,33 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_DERELU_FUSION_H_
|
||||
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_DERELU_FUSION_H_
|
||||
|
||||
#include <memory>
|
||||
#include "pre_activate/common/optimizer.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class DereluFusion : public PatternProcessPass {
|
||||
public:
|
||||
explicit DereluFusion(bool multigraph = true) : PatternProcessPass("derelu_fusion", multigraph) {}
|
||||
~DereluFusion() override = default;
|
||||
const BaseRef DefinePattern() const override;
|
||||
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||
};
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FUSION_DERELU_FUSION_H_
|
|
@ -29,6 +29,7 @@ constexpr size_t kTransOpInputNum = 2;
|
|||
constexpr size_t kCastInputNum = 2;
|
||||
constexpr size_t kDependInputNum = 3;
|
||||
constexpr size_t kReluInputNum = 2;
|
||||
constexpr size_t kReluGradInputNum = 3;
|
||||
constexpr size_t kAddInputNum = 3;
|
||||
constexpr size_t kAddNInputNum = 3;
|
||||
constexpr size_t kTupleGetitemInputNum = 3;
|
||||
|
|
|
@ -116,6 +116,8 @@ constexpr auto kBiasAddOpName = "BiasAdd";
|
|||
constexpr auto kConfusionMulGradOpName = "ConfusionMulGrad";
|
||||
constexpr auto kSendOpName = "Send";
|
||||
constexpr auto kRecvOpName = "Recv";
|
||||
constexpr auto kReluV2OpName = "ReluV2";
|
||||
constexpr auto kReluGradV2OpName = "ReluGradV2";
|
||||
|
||||
// attr key name
|
||||
constexpr auto kAttrInputNames = "input_names";
|
||||
|
|
|
@ -0,0 +1,54 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "common/backend_common_test.h"
|
||||
#include "common/py_func_graph_fetcher.h"
|
||||
#include "pre_activate/common/optimizer.h"
|
||||
#include "pre_activate/ascend/ir_fusion/derelu_fusion.h"
|
||||
#include "debug/anf_ir_dump.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class TestHWOptimizeDereluFusion : public BackendCommon {
|
||||
public:
|
||||
TestHWOptimizeDereluFusion() : get_py_fun_("gtest_input.pre_activate.derelu_fusion", true) {}
|
||||
~TestHWOptimizeDereluFusion() override = default;
|
||||
|
||||
UT::PyFuncGraphFetcher get_py_fun_;
|
||||
};
|
||||
|
||||
TEST_F(TestHWOptimizeDereluFusion, test_fusion) {
|
||||
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_derelu_fusion", "before");
|
||||
EXPECT_NE(g, nullptr);
|
||||
std::vector<int> shp{1, 1, 1, 1};
|
||||
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||
AbstractBasePtrList args_spec_list;
|
||||
for (size_t i = 0; i < 2; ++i) {
|
||||
args_spec_list.push_back(x_abstract);
|
||||
}
|
||||
auto fg = GetKernelGraph(g, args_spec_list);
|
||||
|
||||
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||
auto pm = std::make_shared<opt::PassManager>();
|
||||
pm->AddPass(std::make_shared<opt::DereluFusion>());
|
||||
optimizer->AddPassManager(pm);
|
||||
FuncGraphPtr new_graph = optimizer->Optimize(fg);
|
||||
|
||||
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_derelu_fusion", "after");
|
||||
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||
}
|
||||
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,56 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.ops import Primitive
|
||||
|
||||
relu = P.ReLU()
|
||||
relu_grad = Primitive('ReluGrad')
|
||||
relu_v2 = Primitive('ReluV2')
|
||||
relu_grad_v2 = Primitive('ReluGradV2')
|
||||
make_tuple = Primitive('make_tuple')
|
||||
tuple_getitem = Primitive('tuple_getitem')
|
||||
|
||||
class FnDict:
|
||||
def __init__(self):
|
||||
self.fnDict = {}
|
||||
|
||||
def __call__(self, fn):
|
||||
self.fnDict[fn.__name__] = fn
|
||||
|
||||
def __getitem__(self, name):
|
||||
return self.fnDict[name]
|
||||
|
||||
def test_derelu_fusion(tag):
|
||||
fns = FnDict()
|
||||
|
||||
@fns
|
||||
def before(i0, i1):
|
||||
relu_res = relu(i1)
|
||||
res = relu_grad(i0, relu_res)
|
||||
other = relu(relu_res)
|
||||
res = make_tuple(res, other)
|
||||
return res
|
||||
|
||||
@fns
|
||||
def after(i0, i1):
|
||||
relu_res = relu_v2(i1)
|
||||
item0 = tuple_getitem(relu_res, 0)
|
||||
item1 = tuple_getitem(relu_res, 1)
|
||||
other = relu(item0)
|
||||
res = relu_grad_v2(i0, item1)
|
||||
res = make_tuple(res, other)
|
||||
return make_tuple(res)
|
||||
|
||||
return fns[tag]
|
Loading…
Reference in New Issue