forked from mindspore-Ecosystem/mindspore
!2605 High level abstraction of mathematical distributions
Merge pull request !2605 from XunDeng/pp_poc_v3
This commit is contained in:
commit
dffb76a0a9
|
@ -17,13 +17,15 @@ Neural Networks Cells.
|
|||
|
||||
Pre-defined building blocks or computing units to construct Neural Networks.
|
||||
"""
|
||||
from . import layer, loss, optim, metrics, wrap
|
||||
from . import layer, loss, optim, metrics, wrap, distribution
|
||||
from .cell import Cell, GraphKernel
|
||||
from .layer import *
|
||||
from .loss import *
|
||||
from .optim import *
|
||||
from .metrics import *
|
||||
from .wrap import *
|
||||
from .distribution import *
|
||||
|
||||
|
||||
__all__ = ["Cell", "GraphKernel"]
|
||||
__all__.extend(layer.__all__)
|
||||
|
@ -31,5 +33,7 @@ __all__.extend(loss.__all__)
|
|||
__all__.extend(optim.__all__)
|
||||
__all__.extend(metrics.__all__)
|
||||
__all__.extend(wrap.__all__)
|
||||
__all__.extend(distribution.__all__)
|
||||
|
||||
|
||||
__all__.sort()
|
||||
|
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Distribution.
|
||||
|
||||
The high-level components(Distributions) used to construct the probabilistic network.
|
||||
"""
|
||||
|
||||
from .distribution import Distribution
|
||||
from .normal import Normal
|
||||
from .bernoulli import Bernoulli
|
||||
|
||||
__all__ = ['Distribution',
|
||||
'Normal',
|
||||
'Bernoulli',]
|
|
@ -0,0 +1,24 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Distribution operation utility functions.
|
||||
"""
|
||||
from .utils import *
|
||||
|
||||
__all__ = ['check_scalar', 'convert_to_batch', 'cast_to_tensor',
|
||||
'calc_batch_size', 'check_greater',
|
||||
'check_greater_equal_zero',
|
||||
'calc_broadcast_shape_from_param',
|
||||
'check_scalar_from_param', 'check_prob']
|
|
@ -0,0 +1,199 @@
|
|||
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Utitly functions to help distribution class."""
|
||||
import numpy as np
|
||||
from mindspore.ops import _utils as utils
|
||||
from ....common.tensor import Tensor, MetaTensor
|
||||
from ....common.parameter import Parameter
|
||||
from ....common import dtype as mstype
|
||||
|
||||
|
||||
def check_scalar(value):
|
||||
"""
|
||||
Check if input value is a scalar.
|
||||
"""
|
||||
return np.isscalar(value)
|
||||
|
||||
|
||||
def cast_to_tensor(t, dtype=mstype.float32):
|
||||
"""
|
||||
Cast an user input value into a Tensor of dtype.
|
||||
|
||||
Args:
|
||||
t (int, float, list, numpy.ndarray, Tensor, Parameter): object to be cast to Tensor.
|
||||
dtype (mindspore.dtype): dtype of the Tensor. Default: mstype.float32.
|
||||
|
||||
Raises:
|
||||
RuntimeError: if t cannot be cast to Tensor.
|
||||
|
||||
Returns:
|
||||
Tensor.
|
||||
"""
|
||||
if isinstance(t, Parameter):
|
||||
return t
|
||||
if isinstance(t, Tensor):
|
||||
#check if the Tensor in shape of Tensor(4)
|
||||
if t.dim() == 0:
|
||||
value = t.asnumpy()
|
||||
return Tensor([t], dtype=dtype)
|
||||
#convert the type of tensor to dtype
|
||||
t.set_dtype(dtype)
|
||||
return t
|
||||
if isinstance(t, (list, np.ndarray)):
|
||||
return Tensor(t, dtype=dtype)
|
||||
if check_scalar(t):
|
||||
return Tensor([t], dtype=dtype)
|
||||
raise RuntimeError("Input type is not supported.")
|
||||
|
||||
def calc_batch_size(batch_shape):
|
||||
"""
|
||||
Calculate the size of a given batch_shape.
|
||||
|
||||
Args:
|
||||
batch_shape (tuple): batch shape to be calculated.
|
||||
|
||||
Returns:
|
||||
int.
|
||||
"""
|
||||
return int(np.prod(batch_shape))
|
||||
|
||||
def convert_to_batch(t, batch_shape, dtype):
|
||||
"""
|
||||
Convert a Tensor to a given batch shape.
|
||||
|
||||
Args:
|
||||
t (Tensor, Parameter): Tensor to be converted.
|
||||
batch_shape (tuple): desired batch shape.
|
||||
dtype (mindspore.dtype): desired dtype.
|
||||
|
||||
Raises:
|
||||
RuntimeError: if the converison cannot be done.
|
||||
|
||||
Returns:
|
||||
Tensor, with shape of batch_shape.
|
||||
"""
|
||||
if isinstance(t, Parameter):
|
||||
return t
|
||||
t = cast_to_tensor(t, dtype)
|
||||
if t.shape != batch_shape:
|
||||
mul = calc_batch_size(batch_shape) // t.size()
|
||||
if (calc_batch_size(batch_shape) % t.size()) != 0:
|
||||
raise RuntimeError("Cannot cast the tensor to the given batch shape.")
|
||||
temp = list(t.asnumpy()) * mul
|
||||
temp = np.reshape(temp, batch_shape)
|
||||
return Tensor(temp, dtype)
|
||||
return t
|
||||
|
||||
def check_scalar_from_param(params):
|
||||
"""
|
||||
Check if params are all scalars.
|
||||
|
||||
Args:
|
||||
params (dict): parameters used to initialize distribution.
|
||||
|
||||
Notes: String parameters are excluded.
|
||||
"""
|
||||
for value in params.values():
|
||||
if isinstance(value, (str, type(params['dtype']))):
|
||||
continue
|
||||
elif check_scalar(value):
|
||||
continue
|
||||
else:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def calc_broadcast_shape_from_param(params):
|
||||
"""
|
||||
Calculate the broadcast shape from params.
|
||||
|
||||
Args:
|
||||
params (dict): parameters used to initialize distribution.
|
||||
|
||||
Returns:
|
||||
tuple.
|
||||
"""
|
||||
broadcast_shape = []
|
||||
for value in params.values():
|
||||
if isinstance(value, (str, type(params['dtype']))):
|
||||
continue
|
||||
if value is None:
|
||||
return None
|
||||
if isinstance(value, Parameter):
|
||||
value_t = value.default_input
|
||||
else:
|
||||
value_t = cast_to_tensor(value, params['dtype'])
|
||||
broadcast_shape = utils.get_broadcast_shape(broadcast_shape, list(value_t.shape), params['name'])
|
||||
return tuple(broadcast_shape)
|
||||
|
||||
def check_greater_equal_zero(value, name):
|
||||
"""
|
||||
Check if the given Tensor is greater zero.
|
||||
|
||||
Args:
|
||||
value (Tensor, Parameter): value to be checked.
|
||||
name (str) : name of the value.
|
||||
|
||||
Raises:
|
||||
ValueError: if the input value is less than zero.
|
||||
|
||||
"""
|
||||
if isinstance(value, Parameter):
|
||||
if isinstance(value.default_input, MetaTensor):
|
||||
return
|
||||
value = value.default_input
|
||||
comp = np.less(value.asnumpy(), np.zeros(value.shape))
|
||||
if comp.any():
|
||||
raise ValueError(f'{name} should be greater than zero.')
|
||||
|
||||
def check_greater(a, b, name_a, name_b):
|
||||
"""
|
||||
Check if Tensor b is strictly greater than Tensor a.
|
||||
|
||||
Args:
|
||||
a (Tensor): input tensor a.
|
||||
b (Tensor): input tensor b.
|
||||
name_a (str): name of Tensor_a.
|
||||
name_b (str): name of Tensor_b.
|
||||
|
||||
Raises:
|
||||
ValueError: if b is less than or equal to a
|
||||
"""
|
||||
comp = np.less(a.asnumpy(), b.asnumpy())
|
||||
if not comp.all():
|
||||
raise ValueError(f'{name_a} should be less than {name_b}')
|
||||
|
||||
|
||||
def check_prob(p):
|
||||
"""
|
||||
Check if p is a proper probability, i.e. 0 <= p <=1.
|
||||
|
||||
Args:
|
||||
p (Tensor, Parameter): value to be checked.
|
||||
|
||||
Raises:
|
||||
ValueError: if p is not a proper probability.
|
||||
"""
|
||||
if isinstance(p, Parameter):
|
||||
if isinstance(p.default_input, MetaTensor):
|
||||
return
|
||||
p = p.default_input
|
||||
comp = np.less(p.asnumpy(), np.zeros(p.shape))
|
||||
if comp.any():
|
||||
raise ValueError('Probabilities should be greater than or equal to zero')
|
||||
comp = np.greater(p.asnumpy(), np.ones(p.shape))
|
||||
if comp.any():
|
||||
raise ValueError('Probabilities should be less than or equal to one')
|
|
@ -0,0 +1,167 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Bernoulli Distribution"""
|
||||
from mindspore.ops import operations as P
|
||||
from .distribution import Distribution
|
||||
from ._utils.utils import cast_to_tensor, check_prob
|
||||
from ...common import dtype as mstype
|
||||
|
||||
class Bernoulli(Distribution):
|
||||
"""
|
||||
Example class: Bernoulli Distribution.
|
||||
|
||||
Args:
|
||||
probs (int, float, list, numpy.ndarray, Tensor, Parameter): probability of 1 as outcome.
|
||||
seed (int): seed to use in sampling. Default: 0.
|
||||
dtype (mindspore.dtype): type of the distribution. Default: mstype.int32.
|
||||
name (str): name of the distribution. Default: Bernoulli.
|
||||
|
||||
Note:
|
||||
probs should be proper probabilities (0 <= p <= 1).
|
||||
|
||||
Examples:
|
||||
>>> # To initialize a Bernoulli distribution which has equal probability of getting 1 and 0
|
||||
>>> b = nn.Bernoulli(0.5, dtype = mstype.int32)
|
||||
>>> # The following create two independent Bernoulli distributions
|
||||
>>> b = nn.Bernoulli([0.7, 0.2], dtype = mstype.int32)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
probs=None,
|
||||
seed=0,
|
||||
dtype=mstype.int32,
|
||||
name="Bernoulli"):
|
||||
"""
|
||||
Constructor of Bernoulli distribution.
|
||||
"""
|
||||
param = dict(locals())
|
||||
super(Bernoulli, self).__init__(dtype, name, param)
|
||||
if probs is not None:
|
||||
self._probs = cast_to_tensor(probs)
|
||||
check_prob(self._probs)
|
||||
else:
|
||||
self._probs = probs
|
||||
|
||||
# ops needed for the class
|
||||
self.log = P.Log()
|
||||
self.add = P.TensorAdd()
|
||||
self.mul = P.Mul()
|
||||
self.sqrt = P.Sqrt()
|
||||
self.realdiv = P.RealDiv()
|
||||
self.shape = P.Shape()
|
||||
self.const = P.ScalarToArray()
|
||||
self.less = P.Less()
|
||||
self.cast = P.Cast()
|
||||
self.normal = P.Normal(seed=seed)
|
||||
self.erf = P.Erf()
|
||||
self.sqrt = P.Sqrt()
|
||||
|
||||
def extend_repr(self):
|
||||
str_info = f'probs = {self._probs}'
|
||||
return str_info
|
||||
|
||||
def probs(self):
|
||||
"""
|
||||
Returns the probability for the outcome is 1.
|
||||
"""
|
||||
return self._probs
|
||||
|
||||
def _mean(self, name='mean', probs1=None):
|
||||
r"""
|
||||
.. math::
|
||||
MEAN(B) = probs1
|
||||
"""
|
||||
if name == 'mean':
|
||||
return self._probs if probs1 is None else probs1
|
||||
return None
|
||||
|
||||
def _var(self, name='var', probs1=None):
|
||||
r"""
|
||||
.. math::
|
||||
VAR(B) = probs1 * probs0
|
||||
"""
|
||||
if name in ('sd', 'var'):
|
||||
probs1 = self._probs if probs1 is None else probs1
|
||||
probs0 = self.add(1, -1 * probs1)
|
||||
return self.mul(probs0, probs1)
|
||||
return None
|
||||
|
||||
def _prob(self, name, value, probs=None):
|
||||
r"""
|
||||
pmf of Bernoulli distribution.
|
||||
|
||||
Args:
|
||||
name (str): name of the function. Should be "prob" when passed in from construct.
|
||||
value (Tensor): a Tensor composed of only zeros and ones.
|
||||
probs (Tensor): probability of outcome is 1. Default: self._probs.
|
||||
|
||||
.. math::
|
||||
pmf(k) = probs1 if k = 1;
|
||||
pmf(k) = probs0 if k = 0;
|
||||
"""
|
||||
if name in ('prob', 'log_prob'):
|
||||
probs1 = self._probs if probs is None else probs
|
||||
probs0 = self.add(1, -1 * probs1)
|
||||
return self.add(self.mul(probs1, value),
|
||||
self.mul(probs0, self.add(1, -1 * value)))
|
||||
return None
|
||||
|
||||
def _kl_loss(self, name, dist, probs1_b, probs1_a=None):
|
||||
r"""
|
||||
Evaluate bernoulli-bernoulli kl divergence, i.e. KL(a||b).
|
||||
|
||||
Args:
|
||||
name (str): name of the funtion. Should always be "kl_loss" when passed in from construct.
|
||||
dist (str): type of the distributions. Should be "Bernoulli" in this case.
|
||||
probs1_b (Tensor): probs1 of distribution b.
|
||||
probs1_a (Tensor): probs1 of distribution a. Default: self._probs.
|
||||
|
||||
.. math::
|
||||
KL(a||b) = probs1_a * \log(\fract{probs1_a}{probs1_b}) +
|
||||
probs0_a * \log(\fract{probs0_a}{probs0_b})
|
||||
"""
|
||||
if name == 'kl_loss' and dist == 'Bernoulli':
|
||||
probs1_a = self._probs if probs1_a is None else probs1_a
|
||||
probs0_a = self.add(1, -1 * probs1_a)
|
||||
probs0_b = self.add(1, -1 * probs1_b)
|
||||
return self.add(probs1_a * self.log(self.realdiv(probs1_a, probs1_b)),
|
||||
probs0_a * self.log(self.realdiv(probs0_a, probs0_b)))
|
||||
return None
|
||||
|
||||
def _sample(self, name, shape=(), probs=None):
|
||||
"""
|
||||
Sampling.
|
||||
|
||||
Args:
|
||||
name (str): name of the function. Should always be 'sample' when passed in from construct.
|
||||
shape (tuple): shape of the sample. Default: ().
|
||||
probs (Tensor): probs1 of the samples. Default: self._probs.
|
||||
|
||||
Returns:
|
||||
Tensor, shape is shape + batch_shape.
|
||||
"""
|
||||
if name == 'sample':
|
||||
probs1 = self._probs if probs is None else probs
|
||||
batch_shape = self.shape(probs1)
|
||||
sample_shape = shape + batch_shape
|
||||
mean_zero = self.const(0.0)
|
||||
sd_one = self.const(1.0)
|
||||
sqrt_two = self.sqrt(self.const(2.0))
|
||||
sample_norm = self.normal(sample_shape, mean_zero, sd_one)
|
||||
sample_uniform = 0.5 * (1 + self.erf(self.realdiv(sample_norm, sqrt_two)))
|
||||
sample = self.less(sample_uniform, probs1)
|
||||
sample = self.cast(sample, self._dtype)
|
||||
return sample
|
||||
return None
|
|
@ -0,0 +1,200 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""basic"""
|
||||
from ..cell import Cell
|
||||
from ._utils.utils import calc_broadcast_shape_from_param
|
||||
|
||||
|
||||
class Distribution(Cell):
|
||||
"""
|
||||
Base class for all mathematical distributions.
|
||||
|
||||
Args:
|
||||
dtype (mindspore.dtype): type of the distribution.
|
||||
name (str): name of the distribution.
|
||||
param (dict): parameters used to initialize the distribution.
|
||||
|
||||
Note:
|
||||
Derived class should override operations such as ,_mean, _prob,
|
||||
and _log_prob. Functions should be called through construct when
|
||||
used inside a network in the form of function name followed by
|
||||
arguments.
|
||||
|
||||
Examples:
|
||||
>>> class MyNormalDistribution(Distribution):
|
||||
>>> def __init__(self):
|
||||
>>> super(MyDistribution, self).__init__()
|
||||
>>> self._mean_value = Tensor([2.0,3.0])
|
||||
>>> self._sd_value = Tensor([2.0,3.0])
|
||||
>>>
|
||||
>>> def _mean(self):
|
||||
>>> return self._mean_value
|
||||
|
||||
"""
|
||||
def __init__(self,
|
||||
dtype,
|
||||
name,
|
||||
param):
|
||||
|
||||
"""
|
||||
Constructor of distribution class.
|
||||
"""
|
||||
super(Distribution, self).__init__()
|
||||
self._name = name
|
||||
self._dtype = dtype
|
||||
self._parameters = {}
|
||||
# parsing parameters
|
||||
for k in param.keys():
|
||||
if not(k == 'self' or k.startswith('_')):
|
||||
self._parameters[k] = param[k]
|
||||
# some attributes
|
||||
self._broadcast_shape = calc_broadcast_shape_from_param(
|
||||
self._parameters)
|
||||
|
||||
# set the function to call according to the derived class's attributes
|
||||
self._set_prob()
|
||||
self._set_log_prob()
|
||||
self._set_sd()
|
||||
|
||||
def _set_prob(self):
|
||||
"""
|
||||
Set probability funtion based on the availability of _prob and _log_likehood.
|
||||
"""
|
||||
if hasattr(self, '_prob'):
|
||||
self._call_prob = self._prob
|
||||
elif hasattr(self, '_log_likelihood'):
|
||||
self._call_prob = self._calc_prob_from_log_likelihood
|
||||
|
||||
def _set_sd(self):
|
||||
"""
|
||||
Set standard deviation based on the availability of _sd and _var.
|
||||
"""
|
||||
if hasattr(self, '_sd'):
|
||||
self._call_sd = self._sd
|
||||
elif hasattr(self, '_var'):
|
||||
self._call_sd = self._calc_sd_from_var
|
||||
|
||||
def _set_log_prob(self):
|
||||
"""
|
||||
Set log probability based on the availability of _prob and _log_likelihood.
|
||||
"""
|
||||
if hasattr(self, '_log_likelihood'):
|
||||
self._call_log_prob = self._log_likelihood
|
||||
if hasattr(self, '_prob'):
|
||||
self._call_log_prob = self._calc_log_prob_from_prob
|
||||
|
||||
def log_likelihood(self, *args):
|
||||
"""
|
||||
Evaluate the log probability at the given value.
|
||||
|
||||
Note:
|
||||
value is casted to Tensor for further calculation.
|
||||
|
||||
Returns:
|
||||
Tensor, shape is the broadcast_shape of the distribution.
|
||||
"""
|
||||
return self._call_log_prob(*args)
|
||||
|
||||
def _calc_prob_from_log_likelihood(self, *args):
|
||||
r"""
|
||||
Evaluate prob from log probability.
|
||||
|
||||
.. math::
|
||||
probability(x) = \exp(log_likehood(x))
|
||||
"""
|
||||
return self.exp(self._log_likelihood(*args))
|
||||
|
||||
def prob(self, *args):
|
||||
"""
|
||||
Evaluate the prob (pdf or pmf) at given value.
|
||||
|
||||
Note:
|
||||
value is casted to Tensor for further calculation.
|
||||
|
||||
Returns:
|
||||
Tensor, shape is the broadcast_shape of the distribution.
|
||||
"""
|
||||
return self._call_prob(*args)
|
||||
|
||||
def _calc_log_prob_from_prob(self, *args):
|
||||
r"""
|
||||
Evaluate log probability from probability.
|
||||
|
||||
.. math::
|
||||
log_prob(x) = \log(prob(x))
|
||||
"""
|
||||
return self.log(self._prob(*args))
|
||||
|
||||
def kl_loss(self, **kwargs):
|
||||
"""
|
||||
Evaluate the KL divergence. Parameters of the second distribution should be
|
||||
passed in through **kwargs.
|
||||
|
||||
Returns:
|
||||
Tensor, shape is the broadcast_shape of the distribution and input distribution.
|
||||
"""
|
||||
return self._kl_loss(**kwargs)
|
||||
|
||||
def mean(self, **kwargs):
|
||||
"""
|
||||
Evaluate the mean.
|
||||
|
||||
Returns:
|
||||
Tensor, shape is the broadcast_shape of the distribution.
|
||||
"""
|
||||
return self._mean(**kwargs)
|
||||
|
||||
def sd(self, **kwargs):
|
||||
"""
|
||||
Evaluate the standard deviation.
|
||||
|
||||
Returns:
|
||||
Tensor, shape is the broadcast_shape of the distribution.
|
||||
"""
|
||||
return self._call_sd(**kwargs)
|
||||
|
||||
def _calc_sd_from_var(self, *args):
|
||||
r"""
|
||||
Evaluate log probability from probability.
|
||||
|
||||
.. math::
|
||||
STD(x) = \sqrt(VAR(x))
|
||||
"""
|
||||
return self.sqrt(self._var(*args))
|
||||
|
||||
def construct(self, *inputs):
|
||||
"""
|
||||
Override construct in Cell.
|
||||
|
||||
Args:
|
||||
*inputs: inputs[0] is always the name of the function.
|
||||
|
||||
Notes:
|
||||
Always raise RuntimeError as Distribution should not be called directly.
|
||||
"""
|
||||
|
||||
if inputs[0] == 'log_prob':
|
||||
return self._call_log_prob(*inputs)
|
||||
if inputs[0] == 'prob':
|
||||
return self._call_prob(*inputs)
|
||||
if inputs[0] == 'kl_loss':
|
||||
return self._kl_loss(*inputs)
|
||||
if inputs[0] == 'mean':
|
||||
return self._mean(*inputs)
|
||||
if inputs[0] == 'sd':
|
||||
return self._call_sd(*inputs)
|
||||
if inputs[0] == 'sample':
|
||||
return self._sample(*inputs)
|
||||
return None
|
|
@ -0,0 +1,169 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Normal Distribution"""
|
||||
import numpy as np
|
||||
from mindspore.ops import operations as P
|
||||
from .distribution import Distribution
|
||||
from ._utils.utils import convert_to_batch, check_greater_equal_zero
|
||||
from ...common import dtype as mstype
|
||||
from ...context import get_context
|
||||
|
||||
class Normal(Distribution):
|
||||
"""
|
||||
Example class: Normal distribution.
|
||||
|
||||
Args:
|
||||
mean (int, float, list, numpy.ndarray, Tensor, Parameter): mean of the Gaussian distribution.
|
||||
sd (int, float, list, numpy.ndarray, Tensor, Parameter): stddev of the Gaussian distribution.
|
||||
seed (int): seed to use in sampling. Default: 0.
|
||||
dtype (mindspore.dtype): type of the distribution. Default: mstype.float32.
|
||||
name (str): name of the distribution. Default: Normal.
|
||||
|
||||
|
||||
Note:
|
||||
Standard deviation should be greater than zero.
|
||||
|
||||
Examples:
|
||||
>>> # To initialize a normal distribution of mean 3.0 and standard deviation 4.0
|
||||
>>> n = nn.Normal(3.0, 4.0, dtype=mstype.float32)
|
||||
>>> # The following create two independent normal distributions
|
||||
>>> n = nn.Normal([3.0, 3.0], [4.0, 4.0], dtype=mstype.float32)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
mean=None,
|
||||
sd=None,
|
||||
seed=0,
|
||||
dtype=mstype.float32,
|
||||
name="Normal"):
|
||||
"""
|
||||
Constructor of normal distribution.
|
||||
"""
|
||||
param = dict(locals())
|
||||
super(Normal, self).__init__(dtype, name, param)
|
||||
if mean is not None and sd is not None:
|
||||
self._mean_value = convert_to_batch(mean, self._broadcast_shape, dtype)
|
||||
self._sd_value = convert_to_batch(sd, self._broadcast_shape, dtype)
|
||||
check_greater_equal_zero(self._sd_value, "Standard deviation")
|
||||
else:
|
||||
self._mean_value = mean
|
||||
self._sd_value = sd
|
||||
|
||||
#ops needed for the class
|
||||
self.exp = P.Exp()
|
||||
self.add = P.TensorAdd()
|
||||
self.mul = P.Mul()
|
||||
self.sq = P.Square()
|
||||
self.log = P.Log()
|
||||
self.sqrt = P.Sqrt()
|
||||
self.realdiv = P.RealDiv()
|
||||
self.expm1 = P.Expm1() if get_context('device_target') == 'Ascend' else self._expm1_by_step
|
||||
self.normal = P.Normal(seed=seed)
|
||||
self.shape = P.Shape()
|
||||
self.zeroslike = P.ZerosLike()
|
||||
self.const = P.ScalarToArray()
|
||||
|
||||
def extend_repr(self):
|
||||
str_info = f'mean = {self._mean_value}, standard deviation = {self._sd_value}'
|
||||
return str_info
|
||||
|
||||
def _expm1_by_step(self, x):
|
||||
"""
|
||||
Expm1 ops under GPU context.
|
||||
"""
|
||||
return self.add(self.exp(x), -1)
|
||||
|
||||
def _mean(self, name='mean', mean=None, sd=None):
|
||||
"""
|
||||
Mean of the distribution.
|
||||
"""
|
||||
if name == 'mean':
|
||||
mean = self._mean_value if mean is None or sd is None else mean
|
||||
return mean
|
||||
return None
|
||||
|
||||
def _sd(self, name='sd', mean=None, sd=None):
|
||||
"""
|
||||
Standard deviation of the distribution.
|
||||
"""
|
||||
if name in ('sd', 'var'):
|
||||
sd = self._sd_value if mean is None or sd is None else sd
|
||||
return sd
|
||||
return None
|
||||
|
||||
def _log_likelihood(self, name, value, mean=None, sd=None):
|
||||
r"""
|
||||
Evaluate log probability.
|
||||
|
||||
.. math::
|
||||
L(x) = -1* \fract{(x - \mu)^2}{2. * \sigma^2} - \log(\sqrt(2* \pi * \sigma^2))
|
||||
"""
|
||||
if name in ('prob', 'log_prob'):
|
||||
mean = self._mean_value if mean is None else mean
|
||||
sd = self._sd_value if sd is None else sd
|
||||
unnormalized_log_prob = -1. * self.realdiv(self.sq(self.add(value, -1. * mean)),
|
||||
2. * self.sq(sd))
|
||||
neg_normalization = -1. * self.log(self.sqrt(2. * np.pi * self.sq(sd)))
|
||||
return self.add(unnormalized_log_prob, neg_normalization)
|
||||
return None
|
||||
|
||||
def _kl_loss(self, name, dist, mean_b, sd_b, mean_a=None, sd_a=None):
|
||||
r"""
|
||||
Evaluate Normal-Normal kl divergence, i.e. KL(a||b).
|
||||
|
||||
Args:
|
||||
name (str): name of the funtion passed in from construct. Should always be "kl_loss".
|
||||
dist (str): type of the distributions. Should be "Normal" in this case.
|
||||
mean_b (Tensor): mean of distribution b.
|
||||
sd_b (Tensor): standard deviation distribution b.
|
||||
mean_a (Tensor): mean of distribution a. Default: self._mean_value.
|
||||
sd_a (Tensor): standard deviation distribution a. Default: self._sd_value.
|
||||
|
||||
.. math::
|
||||
KL(a||b) = 0.5 * (\fract{MEAN(a)}{STD(b)} - \fract{MEAN(b)}{STD(b)}) ^ 2 +
|
||||
0.5 * EXPM1(2 * (\log(STD(a)) - \log(STD(b))) - (\log(STD(a)) - \log(STD(b)))
|
||||
"""
|
||||
if name == 'kl_loss' and dist == 'Normal':
|
||||
mean_a = self._mean_value if mean_a is None else mean_a
|
||||
sd_a = self._sd_value if sd_a is None else sd_a
|
||||
diff_log_scale = self.add(self.log(sd_a), - self.log(sd_b))
|
||||
squared_diff = self.sq(self.add(self.realdiv(mean_a, sd_b), - self.realdiv(mean_b, sd_b)))
|
||||
return self.add(self.add(0.5 * squared_diff, 0.5 * self.expm1(2 * diff_log_scale)), - diff_log_scale)
|
||||
return None
|
||||
|
||||
def _sample(self, name, shape=(), mean=None, sd=None):
|
||||
"""
|
||||
Sampling.
|
||||
|
||||
Args:
|
||||
name (str): name of the function. Should always be 'sample' when passed in from construct.
|
||||
shape (tuple): shape of the sample. Default: ().
|
||||
mean (Tensor): mean of the samples. Default: self._mean_value.
|
||||
sd (Tensor): standard deviation of the samples. Default: self._sd_value.
|
||||
|
||||
Returns:
|
||||
Tensor, shape is shape + batch_shape.
|
||||
"""
|
||||
if name == 'sample':
|
||||
mean = self._mean_value if mean is None else mean
|
||||
sd = self._sd_value if sd is None else sd
|
||||
batch_shape = self.shape(self.add(self.zeroslike(mean), self.zeroslike(sd)))
|
||||
sample_shape = shape + batch_shape
|
||||
mean_zero = self.const(0.0)
|
||||
sd_one = self.const(1.0)
|
||||
sample_norm = self.normal(sample_shape, mean_zero, sd_one)
|
||||
sample = self.add(mean, self.mul(sample_norm, sd))
|
||||
return sample
|
||||
return None
|
|
@ -0,0 +1,147 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for bernoulli distribution"""
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore import dtype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Net(nn.Cell):
|
||||
"""
|
||||
Test class: probability of bernoulli distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
return self.b('prob', x_)
|
||||
|
||||
class Net1(nn.Cell):
|
||||
"""
|
||||
Test class: log probability of bernoulli distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Net1, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
return self.b('log_prob', x_)
|
||||
|
||||
class Net2(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss between bernoulli distributions.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Net2, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
return self.b('kl_loss', 'Bernoulli', x_)
|
||||
|
||||
class Net3(nn.Cell):
|
||||
"""
|
||||
Test class: mean/sd of bernoulli distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Net3, self).__init__()
|
||||
self.b = nn.Bernoulli([0.5, 0.5], dtype=dtype.int32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
return self.b('mean'), self.b('sd')
|
||||
|
||||
class Net4(nn.Cell):
|
||||
"""
|
||||
Test class: log probability of bernoulli distribution.
|
||||
"""
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Net4, self).__init__()
|
||||
self.b = nn.Bernoulli([0.7, 0.5], seed=seed, dtype=dtype.int32)
|
||||
self.shape = shape
|
||||
|
||||
@ms_function
|
||||
def construct(self, probs=None):
|
||||
return self.b('sample', self.shape, probs)
|
||||
|
||||
def test_pmf():
|
||||
"""
|
||||
Test pmf.
|
||||
"""
|
||||
bernoulli_benchmark = stats.bernoulli(0.7)
|
||||
expect_pmf = bernoulli_benchmark.pmf([0, 1, 0, 1, 1]).astype(np.float32)
|
||||
pdf = Net()
|
||||
x_ = Tensor(np.array([0, 1, 0, 1, 1]).astype(np.int32), dtype=dtype.float32)
|
||||
output = pdf(x_)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_pmf) < tol).all()
|
||||
|
||||
def test_log_likelihood():
|
||||
"""
|
||||
Test log_pmf.
|
||||
"""
|
||||
bernoulli_benchmark = stats.bernoulli(0.7)
|
||||
expect_logpmf = bernoulli_benchmark.logpmf([0, 1, 0, 1, 1]).astype(np.float32)
|
||||
logprob = Net1()
|
||||
x_ = Tensor(np.array([0, 1, 0, 1, 1]).astype(np.int32), dtype=dtype.float32)
|
||||
output = logprob(x_)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_logpmf) < tol).all()
|
||||
|
||||
def test_kl_loss():
|
||||
"""
|
||||
Test kl_loss.
|
||||
"""
|
||||
probs1_a = 0.7
|
||||
probs1_b = 0.5
|
||||
probs0_a = 1 - probs1_a
|
||||
probs0_b = 1 - probs1_b
|
||||
expect_kl_loss = probs1_a * np.log(probs1_a / probs1_b) + probs0_a * np.log(probs0_a / probs0_b)
|
||||
kl_loss = Net2()
|
||||
output = kl_loss(Tensor([probs1_b], dtype=dtype.float32))
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
|
||||
|
||||
def test_basics():
|
||||
"""
|
||||
Test mean/standard deviation and probs.
|
||||
"""
|
||||
basics = Net3()
|
||||
mean, sd = basics()
|
||||
expect_mean = [0.5, 0.5]
|
||||
assert (mean.asnumpy() == expect_mean).all()
|
||||
assert (sd.asnumpy() == expect_mean).all()
|
||||
b = nn.Bernoulli([0.7, 0.5], dtype=dtype.int32)
|
||||
probs = b.probs()
|
||||
expect_probs = [0.7, 0.5]
|
||||
tol = 1e-6
|
||||
assert (np.abs(probs.asnumpy() - expect_probs) < tol).all()
|
||||
|
||||
def test_sample():
|
||||
"""
|
||||
Test sample.
|
||||
"""
|
||||
shape = (2, 3)
|
||||
sample = Net4(shape)
|
||||
output = sample()
|
||||
assert output.shape == (2, 3, 2)
|
|
@ -0,0 +1,152 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""test cases for normal distribution"""
|
||||
import numpy as np
|
||||
from scipy import stats
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
from mindspore import dtype
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||
|
||||
class Net(nn.Cell):
|
||||
"""
|
||||
Test class: probability of normal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
return self.n('prob', x_)
|
||||
|
||||
class Net1(nn.Cell):
|
||||
"""
|
||||
Test class: log probability of normal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Net1, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_):
|
||||
return self.n('log_prob', x_)
|
||||
|
||||
class Net2(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss of normal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Net2, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self, x_, y_):
|
||||
return self.n('kl_loss', 'Normal', x_, y_)
|
||||
|
||||
class Net3(nn.Cell):
|
||||
"""
|
||||
Test class: mean/sd of normal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(Net3, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)
|
||||
|
||||
@ms_function
|
||||
def construct(self):
|
||||
return self.n('mean'), self.n('sd')
|
||||
|
||||
class Net4(nn.Cell):
|
||||
"""
|
||||
Test class: mean/sd of normal distribution.
|
||||
"""
|
||||
def __init__(self, shape, seed=0):
|
||||
super(Net4, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
|
||||
self.shape = shape
|
||||
|
||||
@ms_function
|
||||
def construct(self, mean=None, sd=None):
|
||||
return self.n('sample', self.shape, mean, sd)
|
||||
|
||||
def test_pdf():
|
||||
"""
|
||||
Test pdf.
|
||||
"""
|
||||
norm_benchmark = stats.norm(np.array([3.0]), np.array([[2.0], [4.0]]))
|
||||
expect_pdf = norm_benchmark.pdf([1.0, 2.0]).astype(np.float32)
|
||||
pdf = Net()
|
||||
output = pdf(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_pdf) < tol).all()
|
||||
|
||||
def test_log_likelihood():
|
||||
"""
|
||||
Test log_pdf.
|
||||
"""
|
||||
norm_benchmark = stats.norm(np.array([3.0]), np.array([[2.0], [4.0]]))
|
||||
expect_logpdf = norm_benchmark.logpdf([1.0, 2.0]).astype(np.float32)
|
||||
logprob = Net1()
|
||||
output = logprob(Tensor([1.0, 2.0], dtype=dtype.float32))
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_logpdf) < tol).all()
|
||||
|
||||
def test_kl_loss():
|
||||
"""
|
||||
Test kl_loss.
|
||||
"""
|
||||
mean_a = np.array([3.0]).astype(np.float32)
|
||||
sd_a = np.array([4.0]).astype(np.float32)
|
||||
|
||||
mean_b = np.array([1.0]).astype(np.float32)
|
||||
sd_b = np.array([1.0]).astype(np.float32)
|
||||
|
||||
diff_log_scale = np.log(sd_a) - np.log(sd_b)
|
||||
squared_diff = np.square(mean_a / sd_b - mean_b / sd_b)
|
||||
expect_kl_loss = 0.5 * squared_diff + 0.5 * np.expm1(2 * diff_log_scale) - diff_log_scale
|
||||
|
||||
kl_loss = Net2()
|
||||
mean = Tensor(mean_b, dtype=dtype.float32)
|
||||
sd = Tensor(sd_b, dtype=dtype.float32)
|
||||
output = kl_loss(mean, sd)
|
||||
tol = 1e-6
|
||||
assert (np.abs(output.asnumpy() - expect_kl_loss) < tol).all()
|
||||
|
||||
def test_basics():
|
||||
"""
|
||||
Test mean/standard deviation.
|
||||
"""
|
||||
basics = Net3()
|
||||
mean, sd = basics()
|
||||
expect_mean = [3.0, 3.0]
|
||||
expect_sd = [2.0, 4.0]
|
||||
tol = 1e-6
|
||||
assert (np.abs(mean.asnumpy() - expect_mean) < tol).all()
|
||||
assert (np.abs(sd.asnumpy() - expect_sd) < tol).all()
|
||||
|
||||
def test_sample():
|
||||
"""
|
||||
Test sample.
|
||||
"""
|
||||
shape = (2, 3)
|
||||
seed = 10
|
||||
mean = Tensor([2.0], dtype=dtype.float32)
|
||||
sd = Tensor([2.0, 2.0, 2.0], dtype=dtype.float32)
|
||||
sample = Net4(shape, seed=seed)
|
||||
output = sample(mean, sd)
|
||||
assert output.shape == (2, 3, 3)
|
|
@ -0,0 +1,369 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Test nn.Distribution.
|
||||
|
||||
Including Normal Distribution and Bernoulli Distribution.
|
||||
"""
|
||||
import pytest
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import dtype
|
||||
from mindspore import Tensor
|
||||
|
||||
def test_normal_shape_errpr():
|
||||
"""
|
||||
Invalid shapes.
|
||||
"""
|
||||
with pytest.raises(ValueError):
|
||||
nn.Normal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
|
||||
|
||||
def test_no_arguments():
|
||||
"""
|
||||
No args passed in during initialization.
|
||||
"""
|
||||
n = nn.Normal()
|
||||
assert isinstance(n, nn.Distribution)
|
||||
b = nn.Bernoulli()
|
||||
assert isinstance(b, nn.Distribution)
|
||||
|
||||
def test_with_arguments():
|
||||
"""
|
||||
Args passed in during initialization.
|
||||
"""
|
||||
n = nn.Normal([3.0], [4.0], dtype=dtype.float32)
|
||||
assert isinstance(n, nn.Distribution)
|
||||
b = nn.Bernoulli([0.3, 0.5], dtype=dtype.int32)
|
||||
assert isinstance(b, nn.Distribution)
|
||||
|
||||
class NormalProb(nn.Cell):
|
||||
"""
|
||||
Normal distribution: initialize with mean/sd.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(NormalProb, self).__init__()
|
||||
self.normal = nn.Normal(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self, value):
|
||||
x = self.normal('prob', value)
|
||||
y = self.normal('log_prob', value)
|
||||
return x, y
|
||||
|
||||
def test_normal_prob():
|
||||
"""
|
||||
Test pdf/log_pdf: passing value through construct.
|
||||
"""
|
||||
net = NormalProb()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
pdf, log_pdf = net(value)
|
||||
assert isinstance(pdf, Tensor)
|
||||
assert isinstance(log_pdf, Tensor)
|
||||
|
||||
class NormalProb1(nn.Cell):
|
||||
"""
|
||||
Normal distribution: initialize without mean/sd.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(NormalProb1, self).__init__()
|
||||
self.normal = nn.Normal()
|
||||
|
||||
def construct(self, value, mean, sd):
|
||||
x = self.normal('prob', value, mean, sd)
|
||||
y = self.normal('log_prob', value, mean, sd)
|
||||
return x, y
|
||||
|
||||
def test_normal_prob1():
|
||||
"""
|
||||
Test pdf/logpdf: passing mean/sd, value through construct.
|
||||
"""
|
||||
net = NormalProb1()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
mean = Tensor([0.0], dtype=dtype.float32)
|
||||
sd = Tensor([1.0], dtype=dtype.float32)
|
||||
pdf, log_pdf = net(value, mean, sd)
|
||||
assert isinstance(pdf, Tensor)
|
||||
assert isinstance(log_pdf, Tensor)
|
||||
|
||||
class NormalProb2(nn.Cell):
|
||||
"""
|
||||
Normal distribution: initialize with mean/sd.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(NormalProb2, self).__init__()
|
||||
self.normal = nn.Normal(3.0, 4.0, dtype=dtype.float32)
|
||||
|
||||
def construct(self, value, mean, sd):
|
||||
x = self.normal('prob', value, mean, sd)
|
||||
y = self.normal('log_prob', value, mean, sd)
|
||||
return x, y
|
||||
|
||||
def test_normal_prob2():
|
||||
"""
|
||||
Test pdf/log_pdf: passing mean/sd through construct.
|
||||
Overwrite original mean/sd.
|
||||
"""
|
||||
net = NormalProb2()
|
||||
value = Tensor([0.5, 1.0], dtype=dtype.float32)
|
||||
mean = Tensor([0.0], dtype=dtype.float32)
|
||||
sd = Tensor([1.0], dtype=dtype.float32)
|
||||
pdf, log_pdf = net(value, mean, sd)
|
||||
assert isinstance(pdf, Tensor)
|
||||
assert isinstance(log_pdf, Tensor)
|
||||
|
||||
class BernoulliProb(nn.Cell):
|
||||
"""
|
||||
Bernoulli distribution: initialize with probs.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliProb, self).__init__()
|
||||
self.bernoulli = nn.Bernoulli(0.5, dtype=dtype.int32)
|
||||
|
||||
def construct(self, value):
|
||||
return self.bernoulli('prob', value)
|
||||
|
||||
class BernoulliLogProb(nn.Cell):
|
||||
"""
|
||||
Bernoulli distribution: initialize with probs.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliLogProb, self).__init__()
|
||||
self.bernoulli = nn.Bernoulli(0.5, dtype=dtype.int32)
|
||||
|
||||
def construct(self, value):
|
||||
return self.bernoulli('log_prob', value)
|
||||
|
||||
|
||||
def test_bernoulli_prob():
|
||||
"""
|
||||
Test pmf/log_pmf: passing value through construct.
|
||||
"""
|
||||
net = BernoulliProb()
|
||||
value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
|
||||
pmf = net(value)
|
||||
assert isinstance(pmf, Tensor)
|
||||
|
||||
def test_bernoulli_log_prob():
|
||||
"""
|
||||
Test pmf/log_pmf: passing value through construct.
|
||||
"""
|
||||
net = BernoulliLogProb()
|
||||
value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
|
||||
log_pmf = net(value)
|
||||
assert isinstance(log_pmf, Tensor)
|
||||
|
||||
class BernoulliProb1(nn.Cell):
|
||||
"""
|
||||
Bernoulli distribution: initialize without probs.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliProb1, self).__init__()
|
||||
self.bernoulli = nn.Bernoulli()
|
||||
|
||||
def construct(self, value, probs):
|
||||
return self.bernoulli('prob', value, probs)
|
||||
|
||||
class BernoulliLogProb1(nn.Cell):
|
||||
"""
|
||||
Bernoulli distribution: initialize without probs.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliLogProb1, self).__init__()
|
||||
self.bernoulli = nn.Bernoulli()
|
||||
|
||||
def construct(self, value, probs):
|
||||
return self.bernoulli('log_prob', value, probs)
|
||||
|
||||
|
||||
def test_bernoulli_prob1():
|
||||
"""
|
||||
Test pmf/log_pmf: passing probs through construct.
|
||||
"""
|
||||
net = BernoulliProb1()
|
||||
value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
|
||||
probs = Tensor([0.3], dtype=dtype.float32)
|
||||
pmf = net(value, probs)
|
||||
assert isinstance(pmf, Tensor)
|
||||
|
||||
def test_bernoulli_log_prob1():
|
||||
"""
|
||||
Test pmf/log_pmf: passing probs through construct.
|
||||
"""
|
||||
net = BernoulliLogProb1()
|
||||
value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
|
||||
probs = Tensor([0.3], dtype=dtype.float32)
|
||||
log_pmf = net(value, probs)
|
||||
assert isinstance(log_pmf, Tensor)
|
||||
|
||||
class BernoulliProb2(nn.Cell):
|
||||
"""
|
||||
Bernoulli distribution: initialize with probs.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliProb2, self).__init__()
|
||||
self.bernoulli = nn.Bernoulli(0.5)
|
||||
|
||||
def construct(self, value, probs):
|
||||
return self.bernoulli('prob', value, probs)
|
||||
|
||||
class BernoulliLogProb2(nn.Cell):
|
||||
"""
|
||||
Bernoulli distribution: initialize with probs.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliLogProb2, self).__init__()
|
||||
self.bernoulli = nn.Bernoulli(0.5)
|
||||
|
||||
def construct(self, value, probs):
|
||||
return self.bernoulli('log_prob', value, probs)
|
||||
|
||||
|
||||
def test_bernoulli_prob2():
|
||||
"""
|
||||
Test pmf/log_pmf: passing probs/value through construct.
|
||||
Overwrite original probs.
|
||||
"""
|
||||
net = BernoulliProb2()
|
||||
value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
|
||||
probs = Tensor([0.3], dtype=dtype.float32)
|
||||
pmf = net(value, probs)
|
||||
assert isinstance(pmf, Tensor)
|
||||
|
||||
def test_bernoulli_log_prob2():
|
||||
"""
|
||||
Test pmf/log_pmf: passing probs/value through construct.
|
||||
Overwrite original probs.
|
||||
"""
|
||||
net = BernoulliLogProb2()
|
||||
value = Tensor([1, 0, 1, 0, 1], dtype=dtype.float32)
|
||||
probs = Tensor([0.3], dtype=dtype.float32)
|
||||
log_pmf = net(value, probs)
|
||||
assert isinstance(log_pmf, Tensor)
|
||||
|
||||
|
||||
class NormalKl(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss of Normal distribution.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(NormalKl, self).__init__()
|
||||
self.n = nn.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_, y_):
|
||||
return self.n('kl_loss', 'Normal', x_, y_)
|
||||
|
||||
class BernoulliKl(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss between Bernoulli distributions.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliKl, self).__init__()
|
||||
self.b = nn.Bernoulli(0.7, dtype=dtype.int32)
|
||||
|
||||
def construct(self, x_):
|
||||
return self.b('kl_loss', 'Bernoulli', x_)
|
||||
|
||||
def test_kl():
|
||||
"""
|
||||
Test kl_loss function.
|
||||
"""
|
||||
nor_net = NormalKl()
|
||||
mean_b = np.array([1.0]).astype(np.float32)
|
||||
sd_b = np.array([1.0]).astype(np.float32)
|
||||
mean = Tensor(mean_b, dtype=dtype.float32)
|
||||
sd = Tensor(sd_b, dtype=dtype.float32)
|
||||
loss = nor_net(mean, sd)
|
||||
assert isinstance(loss, Tensor)
|
||||
|
||||
ber_net = BernoulliKl()
|
||||
probs_b = Tensor([0.3], dtype=dtype.float32)
|
||||
loss = ber_net(probs_b)
|
||||
assert isinstance(loss, Tensor)
|
||||
|
||||
|
||||
class NormalKlNoArgs(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss of Normal distribution.
|
||||
No args during initialization.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(NormalKlNoArgs, self).__init__()
|
||||
self.n = nn.Normal(dtype=dtype.float32)
|
||||
|
||||
def construct(self, x_, y_, w_, v_):
|
||||
return self.n('kl_loss', 'Normal', x_, y_, w_, v_)
|
||||
|
||||
class BernoulliKlNoArgs(nn.Cell):
|
||||
"""
|
||||
Test class: kl_loss between Bernoulli distributions.
|
||||
No args during initialization.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(BernoulliKlNoArgs, self).__init__()
|
||||
self.b = nn.Bernoulli(dtype=dtype.int32)
|
||||
|
||||
def construct(self, x_, y_):
|
||||
return self.b('kl_loss', 'Bernoulli', x_, y_)
|
||||
|
||||
def test_kl_no_args():
|
||||
"""
|
||||
Test kl_loss function.
|
||||
"""
|
||||
nor_net = NormalKlNoArgs()
|
||||
mean_b = np.array([1.0]).astype(np.float32)
|
||||
sd_b = np.array([1.0]).astype(np.float32)
|
||||
mean_a = np.array([2.0]).astype(np.float32)
|
||||
sd_a = np.array([3.0]).astype(np.float32)
|
||||
mean_b = Tensor(mean_b, dtype=dtype.float32)
|
||||
sd_b = Tensor(sd_b, dtype=dtype.float32)
|
||||
mean_a = Tensor(mean_a, dtype=dtype.float32)
|
||||
sd_a = Tensor(sd_a, dtype=dtype.float32)
|
||||
loss = nor_net(mean_b, sd_b, mean_a, sd_a)
|
||||
assert isinstance(loss, Tensor)
|
||||
|
||||
ber_net = BernoulliKlNoArgs()
|
||||
probs_b = Tensor([0.3], dtype=dtype.float32)
|
||||
probs_a = Tensor([0.7], dtype=dtype.float32)
|
||||
loss = ber_net(probs_b, probs_a)
|
||||
assert isinstance(loss, Tensor)
|
||||
|
||||
|
||||
|
||||
class NormalBernoulli(nn.Cell):
|
||||
"""
|
||||
Test class: basic mean/sd function.
|
||||
"""
|
||||
def __init__(self):
|
||||
super(NormalBernoulli, self).__init__()
|
||||
self.n = nn.Normal(3.0, 4.0, dtype=dtype.float32)
|
||||
self.b = nn.Bernoulli(0.5, dtype=dtype.int32)
|
||||
|
||||
def construct(self):
|
||||
normal_mean = self.n('mean')
|
||||
normal_sd = self.n('sd')
|
||||
bernoulli_mean = self.b('mean')
|
||||
bernoulli_sd = self.b('sd')
|
||||
return normal_mean, normal_sd, bernoulli_mean, bernoulli_sd
|
||||
|
||||
def test_bascis():
|
||||
"""
|
||||
Test mean/sd functionality of Normal and Bernoulli.
|
||||
"""
|
||||
net = NormalBernoulli()
|
||||
normal_mean, normal_sd, bernoulli_mean, bernoulli_sd = net()
|
||||
assert isinstance(normal_mean, Tensor)
|
||||
assert isinstance(normal_sd, Tensor)
|
||||
assert isinstance(bernoulli_mean, Tensor)
|
||||
assert isinstance(bernoulli_sd, Tensor)
|
Loading…
Reference in New Issue