forked from mindspore-Ecosystem/mindspore
!400 Support math operation between float and int for scalar
Merge pull request !400 from amongo/FixMathOps
This commit is contained in:
commit
d34afbd61b
|
@ -201,6 +201,14 @@ bool InnerScalarGe(T x, U y) {
|
|||
int sum = InnerScalar##op_t(GetValue<int>(x), GetValue<int>(y)); \
|
||||
return MakeValue(sum); \
|
||||
} \
|
||||
if (x->isa<Int32Imm>() && y->isa<FP32Imm>()) { \
|
||||
float sum = InnerScalar##op_t(IntToFloat(GetValue<int>(x)), GetValue<float>(y)); \
|
||||
return MakeValue(sum); \
|
||||
} \
|
||||
if (x->isa<FP32Imm>() && y->isa<Int32Imm>()) { \
|
||||
float sum = InnerScalar##op_t(GetValue<float>(x), IntToFloat(GetValue<int>(y))); \
|
||||
return MakeValue(sum); \
|
||||
} \
|
||||
MS_LOG(EXCEPTION) << "Unsupported Value for Scalar" << #op_t << ", x: " << x->ToString() \
|
||||
<< ", y: " << y->ToString(); \
|
||||
} while (0); \
|
||||
|
|
|
@ -445,6 +445,9 @@ AbstractBasePtr UniformPrimEvaluator::EvalPrim(const AnalysisEnginePtr &, const
|
|||
}
|
||||
|
||||
ValuePtr inferred_value = RunImpl(value_list);
|
||||
if (!(*inferred_value == *kAnyValue)) {
|
||||
ret_value_type = inferred_value->type();
|
||||
}
|
||||
// for comparison primitives , return type shall have be specified to be bool.
|
||||
if (specify_out_type_ != nullptr) {
|
||||
ret_value_type = specify_out_type_;
|
||||
|
|
|
@ -81,6 +81,7 @@ inline size_t FloatToSize(float u) {
|
|||
}
|
||||
return static_cast<size_t>(u);
|
||||
}
|
||||
inline float IntToFloat(int32_t v) { return static_cast<float>(v); }
|
||||
|
||||
inline uint32_t IntToUint(int32_t u) {
|
||||
if (u < 0) {
|
||||
|
|
|
@ -25,11 +25,13 @@ from ....mindspore_test_framework.mindspore_test import mindspore_test
|
|||
from ....mindspore_test_framework.pipeline.forward.compile_forward \
|
||||
import pipeline_for_compile_forward_ge_graph_for_case_by_case_config
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
class ComparisonOpsNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(ComparisonOpsNet, self).__init__()
|
||||
|
||||
def construct(self, x, y):
|
||||
a = x <= y
|
||||
b = x <= 1.0
|
||||
|
@ -46,22 +48,60 @@ class ComparisonOpsNet(nn.Cell):
|
|||
m = k != l
|
||||
return a or b or c or d or e or f or g or h or i or j or m
|
||||
|
||||
|
||||
class MathOpsNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(MathOpsNet, self).__init__()
|
||||
self.relu = P.ReLU()
|
||||
|
||||
def construct(self, x, y):
|
||||
x = x - (-1)
|
||||
return self.relu(x)
|
||||
|
||||
|
||||
class ScalarCompareNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(ScalarCompareNet, self).__init__()
|
||||
self.relu = P.ReLU()
|
||||
|
||||
def construct(self, x, y):
|
||||
t = 0
|
||||
if 3 > 3.2:
|
||||
t = x + y
|
||||
else:
|
||||
t = x - y
|
||||
if 3.1 <= 5:
|
||||
t = t - x
|
||||
else:
|
||||
t = t + x
|
||||
a = 32.0 * 12
|
||||
b = 12/3.0
|
||||
if a > b:
|
||||
t = t * x
|
||||
else:
|
||||
t = t / x
|
||||
return t
|
||||
|
||||
|
||||
class LogicalNumberOpsNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super(LogicalNumberOpsNet, self).__init__()
|
||||
self.cond = True
|
||||
self.one = 0
|
||||
self.zero = 0.0
|
||||
|
||||
def construct(self, x, y):
|
||||
if self.cond and self.one or self.zero and not self.one:
|
||||
return x + y
|
||||
return x - y
|
||||
|
||||
|
||||
class LogicalTensorOpsNet(nn.Cell):
|
||||
def __init__(self):
|
||||
""""""
|
||||
super(LogicalTensorOpsNet, self).__init__()
|
||||
self.const_true = Tensor(True, dtype=mstype.bool_)
|
||||
|
||||
def construct(self, x, y):
|
||||
ret = x and y and (y or self.const_true) and (not self.const_true)
|
||||
return ret
|
||||
|
@ -71,20 +111,29 @@ test_case_ops = [
|
|||
('CompareOpsNet', {
|
||||
'block': ComparisonOpsNet(),
|
||||
'desc_inputs': [Tensor(np.ones([6, 9, 10]), dtype=mstype.float32),
|
||||
Tensor(np.zeros([6, 9, 10]), dtype=mstype.float32)]}),
|
||||
Tensor(np.zeros([6, 9, 10]), dtype=mstype.float32)]}),
|
||||
('MathOpsNet', {
|
||||
'block': MathOpsNet(),
|
||||
'desc_inputs': [Tensor(np.ones([6, 9, 10]), dtype=mstype.float32),
|
||||
Tensor(np.zeros([6, 9, 10]), dtype=mstype.float32)]}),
|
||||
('ScalarCompareNet', {
|
||||
'block': ScalarCompareNet(),
|
||||
'desc_inputs': [Tensor(np.ones([6, 9, 10]), dtype=mstype.float32),
|
||||
Tensor(np.zeros([6, 9, 10]), dtype=mstype.float32)]}),
|
||||
('LogicalNumberOps', {
|
||||
'block': LogicalNumberOpsNet(),
|
||||
'desc_inputs': [Tensor(np.ones([6, 9, 10]), dtype=mstype.float32),
|
||||
Tensor(np.zeros([6, 9, 10]), dtype=mstype.float32)]}),
|
||||
Tensor(np.zeros([6, 9, 10]), dtype=mstype.float32)]}),
|
||||
('LogicalTensorOps', {
|
||||
'block': LogicalTensorOpsNet(),
|
||||
'desc_inputs': [Tensor(np.ones([6, 9, 10]).astype(np.bool_), dtype=mstype.bool_),
|
||||
Tensor(np.zeros([6, 9, 10]).astype(np.bool_), dtype=mstype.bool_)]}),
|
||||
Tensor(np.zeros([6, 9, 10]).astype(np.bool_), dtype=mstype.bool_)]}),
|
||||
]
|
||||
|
||||
test_case_lists = [test_case_ops]
|
||||
test_exec_case = functools.reduce(lambda x, y: x + y, test_case_lists)
|
||||
|
||||
|
||||
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
|
||||
def test_compile():
|
||||
return test_exec_case
|
||||
return test_exec_case
|
||||
|
|
Loading…
Reference in New Issue