forked from mindspore-Ecosystem/mindspore
!443 add cpu one hot
Merge pull request !443 from kisnwang/add-cpu-onehot-new
This commit is contained in:
commit
b418b18447
|
@ -0,0 +1,74 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "device/cpu/kernel/one_hot_cpu_kernel.h"
|
||||
#include "device/cpu/cpu_device_address.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace device {
|
||||
namespace cpu {
|
||||
void OneHotCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
if (output_shape.size() < 2) {
|
||||
MS_LOG(EXCEPTION) << "invalid output shape size: " << output_shape.size();
|
||||
}
|
||||
int axis = AnfAlgo::GetNodeAttr<int>(kernel_node, AXIS);
|
||||
if (axis != -1 && IntToSize(axis) >= output_shape.size()) {
|
||||
MS_LOG(EXCEPTION) << "invalid axis: " << axis;
|
||||
}
|
||||
if (axis == -1) {
|
||||
axis_ = output_shape.size() - 1;
|
||||
} else {
|
||||
axis_ = IntToSize(axis);
|
||||
}
|
||||
depth_ = output_shape[axis_];
|
||||
stride_ = 1;
|
||||
for (size_t i = axis_ + 1; i < output_shape.size(); ++i) {
|
||||
stride_ *= output_shape[i];
|
||||
}
|
||||
}
|
||||
|
||||
bool OneHotCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (inputs.size() < 3 || outputs.empty()) {
|
||||
MS_LOG(EXCEPTION) << "input or output invalid!";
|
||||
}
|
||||
auto indices = reinterpret_cast<int *>(inputs[0]->addr);
|
||||
auto on_value = reinterpret_cast<float *>(inputs[1]->addr)[0];
|
||||
auto off_value = reinterpret_cast<float *>(inputs[2]->addr)[0];
|
||||
auto output = reinterpret_cast<float *>(outputs[0]->addr);
|
||||
size_t elem_num = inputs[0]->size / sizeof(int);
|
||||
|
||||
for (size_t i = 0; i < elem_num; i++) {
|
||||
size_t stride_num = i / stride_;
|
||||
size_t output_index = stride_num * depth_ * stride_ + i % stride_;
|
||||
size_t index = IntToSize(indices[i]);
|
||||
for (size_t j = 0; j < depth_; j++) {
|
||||
if (index == j) {
|
||||
output[output_index] = on_value;
|
||||
} else {
|
||||
output[output_index] = off_value;
|
||||
}
|
||||
output_index += stride_;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
} // namespace cpu
|
||||
} // namespace device
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,47 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_DEVICE_CPU_ONE_HOT_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_DEVICE_CPU_ONE_HOT_CPU_KERNEL_H_
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "device/cpu/cpu_kernel.h"
|
||||
#include "device/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace device {
|
||||
namespace cpu {
|
||||
class OneHotCPUKernel : public CPUKernel {
|
||||
public:
|
||||
OneHotCPUKernel() = default;
|
||||
~OneHotCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
size_t depth_;
|
||||
size_t stride_;
|
||||
size_t axis_;
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(OneHot, OneHotCPUKernel);
|
||||
} // namespace cpu
|
||||
} // namespace device
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_DEVICE_CPU_ONE_HOT_CPU_KERNEL_H_
|
|
@ -35,6 +35,8 @@ class ReshapeCPUKernel : public CPUKernel {
|
|||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(Reshape, ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Flatten, ReshapeCPUKernel);
|
||||
MS_REG_CPU_KERNEL(ExpandDims, ReshapeCPUKernel);
|
||||
} // namespace cpu
|
||||
} // namespace device
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -0,0 +1,82 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import pytest
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.api import ms_function
|
||||
import numpy as np
|
||||
import mindspore.context as context
|
||||
|
||||
context.set_context(device_target='CPU')
|
||||
|
||||
|
||||
class NetOneHot(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetOneHot, self).__init__()
|
||||
self.on_value = 2.0
|
||||
self.off_value = 3.0
|
||||
|
||||
self.depth_1 = 6
|
||||
self.one_hot_1 = nn.OneHot(-1, self.depth_1, self.on_value, self.off_value)
|
||||
|
||||
self.depth_2 = 4
|
||||
self.one_hot_2 = nn.OneHot(0, self.depth_1, self.on_value, self.off_value)
|
||||
self.one_hot_3 = nn.OneHot(0, self.depth_2, self.on_value, self.off_value)
|
||||
self.one_hot_4 = nn.OneHot(1, self.depth_1, self.on_value, self.off_value)
|
||||
|
||||
@ms_function
|
||||
def construct(self, indices1, indices2, indices3, indices4):
|
||||
return (self.one_hot_1(indices1), self.one_hot_2(indices2),
|
||||
self.one_hot_3(indices3), self.one_hot_4(indices4))
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_one_hot():
|
||||
one_hot = NetOneHot()
|
||||
indices1 = Tensor(np.array([[0, 1], [4, 5], [2, 6]]).astype(np.int32))
|
||||
indices2 = Tensor(np.array([1, 2, 3]).astype(np.int32))
|
||||
indices3 = Tensor(np.array([[0, 1], [1, 0]]).astype(np.int32))
|
||||
indices4 = Tensor(np.array([[0, 1], [4, 5], [2, 6]]).astype(np.int32))
|
||||
output = one_hot(indices1, indices2, indices3, indices4)
|
||||
expect_0 = np.array([
|
||||
[[2., 3., 3., 3., 3., 3.], [3., 2., 3., 3., 3., 3.]],
|
||||
[[3., 3., 3., 3., 2., 3.], [3., 3., 3., 3., 3., 2.]],
|
||||
[[3., 3., 2., 3., 3., 3.], [3., 3., 3., 3., 3., 3.]]
|
||||
]).astype(np.float32)
|
||||
expect_1 = np.array([
|
||||
[3., 3., 3.],
|
||||
[2., 3., 3.],
|
||||
[3., 2., 3.],
|
||||
[3., 3., 2.],
|
||||
[3., 3., 3.],
|
||||
[3., 3., 3.]
|
||||
]).astype(np.float32)
|
||||
expect_2 = np.array([
|
||||
[[2., 3.], [3., 2.]], [[3., 2.], [2., 3.]], [[3., 3.], [3., 3.]],
|
||||
[[3., 3.], [3., 3.]]
|
||||
]).astype(np.float32)
|
||||
expect_3 = np.array([
|
||||
[[2., 3.], [3., 2.], [3., 3.], [3., 3.], [3., 3.], [3., 3.]],
|
||||
[[3., 3.], [3., 3.], [3., 3.], [3., 3.], [2., 3.], [3., 2.]],
|
||||
[[3., 3.], [3., 3.], [2., 3.], [3., 3.], [3., 3.], [3., 3.]]
|
||||
]).astype(np.float32)
|
||||
assert (output[0].asnumpy() == expect_0).all()
|
||||
assert (output[1].asnumpy() == expect_1).all()
|
||||
assert (output[2].asnumpy() == expect_2).all()
|
||||
assert (output[3].asnumpy() == expect_3).all()
|
Loading…
Reference in New Issue