forked from mindspore-Ecosystem/mindspore
!17956 numpy-native trim tests
Merge pull request !17956 from huangmengxi/numpy_pr
This commit is contained in:
commit
90c9c2b8bc
|
@ -534,12 +534,8 @@ def onp_vstack(input_array):
|
|||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_vstack():
|
||||
onp_seq_lst0, mnp_seq_lst0 = prepare_array_sequences(
|
||||
n_lst=[1, 5], ndim_lst=[2, 3, 4], axis=0)
|
||||
onp_seq_lst1, mnp_seq_lst1 = prepare_array_sequences(
|
||||
n_lst=[1, 5], ndim_lst=[1])
|
||||
onp_seq_lst = onp_seq_lst0 + onp_seq_lst1
|
||||
mnp_seq_lst = mnp_seq_lst0 + mnp_seq_lst1
|
||||
onp_seq_lst, mnp_seq_lst = prepare_array_sequences(
|
||||
n_lst=[1], ndim_lst=[2], axis=0)
|
||||
for i, onp_seq in enumerate(onp_seq_lst):
|
||||
mnp_seq = mnp_seq_lst[i]
|
||||
o_vstack = onp_vstack(onp_seq)
|
||||
|
@ -1596,8 +1592,8 @@ def test_piecewise():
|
|||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_unravel_index():
|
||||
shapes = [(), 1, 3, (5, 1), (2, 6, 3)]
|
||||
dims = [(5, 4, 7), (5*4, 7), 5*4*7]
|
||||
shapes = [(2, 6, 3)]
|
||||
dims = [(5, 4, 7), 5*4*7]
|
||||
for shape in shapes:
|
||||
x = onp.random.randint(0, 5*4*7, shape)
|
||||
for dim in dims:
|
||||
|
|
|
@ -2206,25 +2206,13 @@ def test_histogramdd():
|
|||
y = [onp.random.randint(-10, 10, 5), onp.random.randint(-10, 10, 5), onp.random.randint(-10, 10, 5)]
|
||||
mnp_y = list(map(to_tensor, y))
|
||||
weights = onp.random.randn(5)
|
||||
for bins in [(15, 4, 9), 10, [onp.arange(5).tolist(), onp.arange(3, 6).tolist(),
|
||||
onp.arange(10, 20).tolist()]]:
|
||||
for bins in [(15, 4, 9), 10]:
|
||||
# pylint: disable=redefined-builtin
|
||||
for range in [None, [[0, 5], [2, 7], [1, 3]]]:
|
||||
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range)
|
||||
onp_res = onp.histogramdd(x, bins=bins, range=range)
|
||||
match_all_arrays(mnp_res[0], onp_res[0], error=1)
|
||||
match_all_arrays(mnp_res[1], onp_res[1], error=1)
|
||||
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range, density=True)
|
||||
onp_res = onp.histogramdd(x, bins=bins, range=range, density=True)
|
||||
match_all_arrays(mnp_res[0], onp_res[0], error=1)
|
||||
match_all_arrays(mnp_res[1], onp_res[1], error=1)
|
||||
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range, weights=to_tensor(weights))
|
||||
onp_res = onp.histogramdd(x, bins=bins, range=range, weights=weights)
|
||||
match_all_arrays(mnp_res[0], onp_res[0], error=1)
|
||||
match_all_arrays(mnp_res[1], onp_res[1], error=1)
|
||||
mnp_res = mnp.histogramdd(to_tensor(x), bins=bins, range=range,
|
||||
weights=to_tensor(weights), density=True)
|
||||
|
||||
mnp_res = mnp.histogramdd(mnp_y, bins=bins, range=range, weights=to_tensor(weights),
|
||||
density=True)
|
||||
onp_res = onp.histogramdd(y, bins, range=range, weights=weights, density=True)
|
||||
|
@ -2249,16 +2237,10 @@ def test_histogram2d():
|
|||
y = onp.random.randint(-10, 10, 10)
|
||||
|
||||
weights = onp.random.randn(10)
|
||||
for bins in [(5, 7), 4, [onp.arange(5).tolist(), onp.arange(2, 10).tolist()], [8, [1, 2, 3]]]:
|
||||
for bins in [4, [8, [1, 2, 3]]]:
|
||||
# pylint: disable=redefined-builtin
|
||||
for range in [None, [(3, 3), (2, 20)]]:
|
||||
match_res(mnp.histogram2d, onp.histogram2d, x, y, bins=bins, range=range, error=1)
|
||||
match_res(mnp.histogram2d, onp.histogram2d, x, y, bins=bins, range=range, density=True,
|
||||
error=1)
|
||||
mnp_res = mnp.histogram2d(to_tensor(x), to_tensor(y), bins=bins, range=range,
|
||||
weights=to_tensor(weights))
|
||||
onp_res = onp.histogram2d(x, y, bins=bins, range=range, weights=weights)
|
||||
match_all_arrays(mnp_res, onp_res, error=1)
|
||||
mnp_res = mnp.histogram2d(to_tensor(x), to_tensor(y), bins=bins, range=range,
|
||||
weights=to_tensor(weights), density=True)
|
||||
onp_res = onp.histogram2d(x, y, bins=bins, range=range, weights=weights, density=True)
|
||||
|
@ -2626,19 +2608,11 @@ def test_ravel_multi_index():
|
|||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_norm():
|
||||
arrs = [rand_int(1), rand_int(9), rand_int(6, 4), rand_int(5, 2, 3, 7)]
|
||||
arrs = [rand_int(5, 2, 3, 7)]
|
||||
for x in arrs:
|
||||
for keepdims in [True, False]:
|
||||
match_res(mnp.norm, onp.linalg.norm, x, keepdims=keepdims, error=3)
|
||||
|
||||
axes = [None, -1, 1, 2]
|
||||
order = [None, float('inf'), -float('inf'), 0, 1, -1, 2, -2, 3.7, -5, 3]
|
||||
for x, axis in zip(arrs, axes):
|
||||
# pylint: disable=redefined-builtin
|
||||
for ord in order:
|
||||
for keepdims in [True, False]:
|
||||
match_res(mnp.norm, onp.linalg.norm, x, ord=ord, axis=axis, keepdims=keepdims, error=3)
|
||||
|
||||
x = rand_int(3, 6, 4, 5)
|
||||
axes = [(0, 1), (0, 3), (1, 3), (2, 3)]
|
||||
order = [None, 'fro', float('inf'), -float('inf'), 1, -1]
|
||||
|
|
Loading…
Reference in New Issue